Nano zinc phosphate coatings for enhanced corrosion resistance of mild steel

2015 ◽  
Vol 327 ◽  
pp. 218-225 ◽  
Author(s):  
M. Tamilselvi ◽  
P. Kamaraj ◽  
M. Arthanareeswari ◽  
S. Devikala
2015 ◽  
Vol 332 ◽  
pp. 12-21 ◽  
Author(s):  
M. Tamilselvi ◽  
P. Kamaraj ◽  
M. Arthanareeswari ◽  
S. Devikala ◽  
J. Arockia Selvi

2019 ◽  
Vol 374 ◽  
pp. 935-943 ◽  
Author(s):  
Haowei Huang ◽  
Huihui Wang ◽  
Yuhui Xie ◽  
Dexuan Dong ◽  
Xiang Jiang ◽  
...  

2018 ◽  
Vol 47 (2) ◽  
pp. 97-107 ◽  
Author(s):  
Sandip D. Rajput ◽  
Chandrashekhar K. Patil ◽  
Vikas V. Gite

Purpose The present study aims to demonstrate the use of renewable source in the preparation of polyurethane (PU) coatings and mitigation of corrosion of mild steel using nano zinc phosphate. Results indicated improvement in the properties of the PU coatings, especially anticorrosive properties by the addition of nano zinc phosphate. Design/methodology/approach Renewable-source-based polyestermyristamide polyol was synthesized using myristic acid as a starting material. The synthesis of polyol was carried by amidation as well as by esterification by a one-pot route. The structure of the prepared polyestermyristamide was confirmed with the support of end-group analysis and spectral study. PU coatings were prepared from synthesized polyestermyristamide polyol and used to protect metal substrate against corrosion. Corrosion properties of the prepared PU were found to be lower; hence, to improve the performance of these coatings, nano zinc phosphate was added to the coatings. The nano zinc phosphate was synthesized in the laboratory by reported sonication method and analyzed for morphology by scanning electron microscopy. Performance of coatings was studied with respect to effect of percentage nano zinc phosphate on thermal stability, mechanical properties and chemical resistances of PU coatings. Findings The combination of zinc phosphate nano rods and particles in myristic acid-based PU coatings provided substantial corrosion barrier properties to the coatings. Different per cent of the synthesized zinc phosphate nano rods and particles were loaded into the matrix, and corresponding coatings were estimated for corrosion resistance, thermal and chemical properties. Immersion study of the coated panels in 3.5 per cent NaCl solution showed good corrosion resistance for both PU coatings containing 2 and 3 per cent nano zinc phosphate. Practical implications This paper has provided the solution to replace existing petroleum-based raw materials with myristic acid as a renewable source in preparing PU coatings. Conventional coatings act as physical barriers against aggressive species but do not have ability to perform as permanent impassable to corrosive species. Hence, nano-sized zinc phosphate is used as corrosion inhibitor in to the synthesized PU coatings for enhancing anticorrosive performance. Originality/value In the paper, polyesteramide polyol is synthesized using renewable-source-based material, i.e. myristic acid to replace existing petroleum-based acid as a greener approach. Normally, vegetable oils are preferred as they have such kinds of polyols. The polyesteramide reaction is one pot that avoids the extra steps required in the synthesis. Further, it has been found that the pristine renewable coatings are unable to fully protect subtract from corrosion, whereas an addition of the nano-size zinc phosphate has enhanced the corrosion properties of the coatings.


2012 ◽  
Vol 626 ◽  
pp. 569-574 ◽  
Author(s):  
Khalid Abdalla ◽  
Rahmat Azmi ◽  
Aziz Azizan

Zinc phosphate coating is commonly used for corrosion protection of metallic materials, mainly mild steel. In this study, influence of the pH of phosphating bath on the surface morphology and corrosion resistance of zinc phosphate coatings on mild steel was investigated. The phosphate layers were deposited on steel from phosphating bath at different pH values (1.75 ~ 2.75). The surface morphology and composition of phosphate coatings were investigated via scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX). The corrosion resistance of the coating was evaluated by polarization curves (anodic and cathodic) in an aerated 3.5% NaCl solution. The results showed that better surface coverage and corrosion resistance for the steel phosphated at pH 2.75.


2012 ◽  
Vol 626 ◽  
pp. 183-189
Author(s):  
Khalid Abdalla ◽  
Rahmat Azmi ◽  
Aziz Azizan

The influence of phosphating temperature on the surface morphology and corrosion resistance of zinc phosphate coatings on mild steel was investigated. The phosphate layers were deposited on steel from phosphating bath at different temperatures (45 ~ 75 C). The surface morphology and composition of phosphate coatings were investigated via scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX). The corrosion resistance of the coatings was evaluated by polarization curves (anodic and cathodic) in an aerated 3.5% NaCl solution. The results showed that the increase in temperature of the phosphating bath up to 55 C caused an increase in surface coverage and in turn resulted in better corrosion resistance. At high temperature (65 °C and 75 °C) the deposition coverage decreased indicating that the best coverage for the phosphate layer on the metal surface was achieved at 55 °C


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
M. Arthanareeswari ◽  
P. Kamaraj ◽  
M. Tamilselvi

The anticorrosive performance of zinc phosphate coatings developed by galvanic coupling technique on mild steel substrates using the cathode materials such as titanium (Ti), copper (Cu), brass (BR), nickel (Ni), and stainless steel (SS) is elucidated in this study. Thermal and chemical stability tests, immersion test in 3.5% NaCl, ARE salt droplet test, and salt spray test were carried out. The study reveals that the mild steel substrates phosphated under galvanically coupled condition showed better corrosion resistance than the one coated without coupling. The open circuit potential (OCP) of phosphated mild steel panels in 3.5% NaCl was found to be a function of phosphate coating weight and porosity of the coating.


2018 ◽  
Vol 4 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Nilesh S. Bagal ◽  
Vaibhav S. Kathavate ◽  
Pravin P. Deshpande

AbstractThe present study aims at deposition of zinc phosphate coatings on low carbon steel with incorporated nano- TiO2 particles by chemical phosphating method. The coated low carbon steel samples were assessed in corrosion studies using electrochemical impedance spectroscopy and potentiodynamic polarization techniques (Tafel) in 3.5% NaCl solution. Morphology and chemical composition of the coatings were analyzed by scanning electron microscopy and energy dispersive X-ray spectroscopy in order to observe growth of coating. Significant variations in the coating weight, porosity and corrosion resistance were observed with the addition of nano- TiO2 in the phosphating bath. Corrosion rate of nano-TiO2 chemical phosphate coated samples was found to be 3.5 milli inches per year which was 3 times less than the normal phosphate-coated sample (8 mpy). Electrochemical impedance spectroscopy studies reveal reduction of porosity of nano-TiO2 phosphate coated samples. It was found that nano-TiO2 particles in the phosphating solution yielded uniform phosphate coatings of higher coating weight, fewer defects and enhanced corrosion resistance than the normal zinc phosphate coatings (developed using normal phosphating bath).


Sign in / Sign up

Export Citation Format

Share Document