The role of the beta-Mg17Al12 phase on the anomalous hydrogen evolution and anodic dissolution of AZ magnesium alloys

2020 ◽  
Vol 165 ◽  
pp. 108384
Author(s):  
C. Ubeda ◽  
G. Garces ◽  
P. Adeva ◽  
I. Llorente ◽  
G.S. Frankel ◽  
...  
2018 ◽  
Vol 11 (5) ◽  
pp. 1287-1298 ◽  
Author(s):  
Prashanth W. Menezes ◽  
Chakadola Panda ◽  
Stefan Loos ◽  
Florian Bunschei-Bruns ◽  
Carsten Walter ◽  
...  

The mechanistically distinct and synergistic role of phosphite anions in hydrogen evolution and nickel cations in oxygen evolution have been uncovered for active and durable overall water splitting catalysis in nickel phosphite.


ChemSusChem ◽  
2021 ◽  
Author(s):  
Meng-Jie Zhao ◽  
Sheng-Ying Su ◽  
Ning Deng ◽  
Jun-Qing Shi ◽  
Fang Li ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4651
Author(s):  
Yilin Deng ◽  
Wei Lai ◽  
Bin Xu

The energy crisis and environmental pollution have attracted much attention and have promoted researches on clean and sustainable hydrogen energy resources. With the help of highly active and stable transition metal nickel-based catalysts, the production of hydrogen from water electrolysis from electrolyzed water has become an inexpensive and efficient strategy for generating hydrogen energy. In recent years, heteroatom doping has been found to be an effective strategy to improve the electrocatalytic hydrogen evolution reaction (HER) performances of nickel-based catalysts in acidic, neutral, and alkaline media. This review will highlight many recent works of inexpensive and readily available heteroatom-doped nickel-based HER catalysts. The evaluation methods for the performances of HER catalyst will be briefly described, and the role of heteroatom doping and its application in nickel-based catalyst will be summarized. This article will also point out some heteroatom doping strategies, which may provide references and inspire the design of other catalysts with dopants.


ACS Catalysis ◽  
2018 ◽  
Vol 8 (5) ◽  
pp. 4508-4515 ◽  
Author(s):  
Kye Yeop Kim ◽  
Joohee Lee ◽  
Sungwoo Kang ◽  
Young-Woo Son ◽  
Ho Won Jang ◽  
...  

Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1700 ◽  
Author(s):  
Xi-Shu Wang ◽  
Chang-Hao Tan ◽  
Juan Ma ◽  
Xiao-Dong Zhu ◽  
Qing-Yuan Wang

The low cycle fatigue tests on the crack initiation and propagation of cast magnesium alloys with two small holes were carried out by using in-situ scanning electron microscope (SEM) observation technology. The fatigue crack propagation behaviors and fatigue life, which are affected by two small artificial through holes, including the distances between two holes and their locations, were discussed in detail based on the experimental results and the finite element analysis (FEA). The results indicated that the fatigue multi-cracks occurred chiefly at the edges of two holes and the main crack propagation was along the weak dendrite boundary with the plastic deformation vestiges on the surface of α-Mg phase of cast AM50 and AM60B alloys. The fatigue cracking characteristics of cast AZ91 alloy depended mainly on the brittle properties of β-Mg17Al12 phase, in which the multi-cracks occurred still at the edges of two holes and boundaries of β-Mg17Al12 phase. The fatigue crack initiation position of cast magnesium alloys depends strongly on the radius of curvature of through hole or stress concentration factor at the closed edges of two through holes. In addition, the fatigue multi-cracks were amalgamated for the samples with titled 45° of two small holes of cast Mg-Al alloys when the hole distance is less than 4D (D is the diameter of the small hole).


2017 ◽  
Vol 706 ◽  
pp. 295-303 ◽  
Author(s):  
M. Arul Kumar ◽  
I.J. Beyerlein ◽  
R.A. Lebensohn ◽  
C.N. Tomé

Sign in / Sign up

Export Citation Format

Share Document