Degradation of the plasma sprayed GdMgAl11O19 thermal barrier coating resistant to calcium-magnesium-aluminum-silicate attack at 1350 °C

2020 ◽  
Vol 169 ◽  
pp. 108593 ◽  
Author(s):  
Yiwei Sun ◽  
Hengkai Wu ◽  
Xiaolong Chen ◽  
Chunming Deng ◽  
Duoli Wu ◽  
...  
2018 ◽  
Vol 18 (1) ◽  
pp. 182-192 ◽  
Author(s):  
Mohammed J Kadhim ◽  
Mohammed H Hafiz ◽  
Maryam A Ali Bash

The high temperature corrosion behavior of thermal barrier coating (TBC) systemconsisting of IN-738 LC superalloy substrate, air plasma sprayed Ni24.5Cr6Al0.4Y (wt%)bond coat and air plasma sprayed ZrO2-20 wt% ceria-3.6 wt% yttria (CYSZ) ceramic coatwere characterized. The upper surfaces of CYSZ covered with 30 mg/cm2 , mixed 45 wt%Na2SO4-55 wt% V2O5 salt were exposed at different temperatures from 800 to 1000 oC andinteraction times from 1 up to 8 h. The upper surface plan view of the coatings wereidentified for topography, roughness, chemical composition, phases and reaction productsusing scanning electron microscopy, energy dispersive spectroscopy, talysurf, and X-raydiffraction. XRD analyses of the plasma sprayed coatings after hot corrosion confirmed thephase transformation of nontransformable tetragonal (t') into monoclinic phase, presence ofYVO4 and CeVO4 products. Analysis of the hot corrosion CYSZ coating confirmed theformation of high volume fraction of YVO4, with low volume fractions of CeOV4 and CeO2.The formation of these compounds were combined with formation of monoclinic phase (m)from transformation of nontransformable tetragonal phase (t').


Author(s):  
Yinghua Wang ◽  
Zhuang Ma ◽  
Ling Liu ◽  
Yanbo Liu

AbstractDuring flight, many silicates (sand, dust, debris, fly ash, etc.) are ingested by an engine. They melt at high operating temperatures on the surface of thermal barrier coatings (TBCs) to form calcium-magnesium-aluminum-silicate (CMAS) amorphous settling. CMAS corrodes TBCs and causes many problems, such as composition segregation, degradation, cracking, and disbanding. As a new generation of TBC candidate materials, rare-earth zirconates (such as Sm2Zr2O7) have good CMAS resistance properties. The reaction products of Sm2Zr2O7 and CMAS and their subsequent changes were studied by the reaction of Sm2Zr2O7 and excess CMAS at 1350 °C. After 1 h of reaction, Sm2Zr2O7 powders were not completely corroded. The reaction products were Sm-apatite and c-ZrO2 solid solution. After 4 h of reaction, all Sm2Zr2O7 powders were completely corroded. After 24 h of reaction, Sm-apatite disappeared, and the c-ZrO2 solid solution remained.


Author(s):  
A.C. Fox ◽  
T.W. Clyne

Abstract The gas permeability of plasma sprayed yttria-stabilised zirconia coatings has been measured over a range of temperature, using hydrogen and oxygen gas. The permeability was found to be greater for coatings produced with longer stand-off distances, higher chamber pressures and lower torch powers. Porosity levels have been measured using densitometry and microstructural features have been examined using SEM. A model has been developed for prediction of the permeability from such microstructural features, based on percolation theory. Agreement between predicted and measured permeabilities is good. Ionic conduction through the coatings has also been briefly explored. It is concluded that transport of oxygen through the top coat in thermal barrier coating (TBC) systems, causing oxidation of the bond coat, occurs primarily by gas permeation rather than ionic conduction, at least up to temperatures of about 1000°C and probably up to higher temperatures. Top coat permeabilities appreciably below those measured will be required if the rate of bond coat oxidation is to be reduced by cutting the supply of oxygen to the interface.


Sign in / Sign up

Export Citation Format

Share Document