scholarly journals Fireside corrosion on T24 steel pipes and HVOF NiCr coatings exposed to different salt mixtures

2020 ◽  
Vol 173 ◽  
pp. 108747 ◽  
Author(s):  
N. Abu-warda ◽  
A.J. López ◽  
F. Pedraza ◽  
M.V. Utrilla
Author(s):  
N. G. Zinov’eva

Structure of the Russian export and import of steel industry products presented by results of 9 months of 2019 operation. It was shown, that the total share of pig iron, ferroalloys and semi-products (40.3%) in the ferrous metals export from Russia is practically the same as the share of rolled products and steel pipes (39.4%), whereas the shares in the import structure were 7.7 and 75% accordingly. The share the far abroad countries in the Russian export and import of finished steel products (in natural terms) accounted for 80.6 and 28.7% accordingly, while the share of CIS countries – 19.4 and 71.3% accordingly. For 9 months of 2019 the Russian export of semi-products declined by 10.9% comparing with the analogue period of 2018 and accounted for 10.9 m tons. 54.6% of the total export shipping of semi-products were directed to Mexico, Turkey, Egypt and Taiwan. Within the nearest years the Russian export of semi-products and billets, in particular, will be effected by the further development of the semi-products production in in the countries of Middle East, Turkey, Vietnam and India. The domestic market remained to be more attractive for many Russian companies. For the 9 months of 2019, export of long and flat products accounted for 3 and 5.7 m tons accordingly, declining comparing with the analogue period of the previous year by 11 and 15.6% accordingly. Import of long and flat products decreased by 12 and 0.5%, accounting for 1.0 and 2.9 m tons accordingly. By the results of 9 months of 2019, import declined and export shipping of coated sheet increased. Taking into account the expansion of steel grades assortment by Russian plants, increase of capacities for production of sheet with different coatings, this tendency is likely to remain.


TAPPI Journal ◽  
2014 ◽  
Vol 13 (8) ◽  
pp. 65-78 ◽  
Author(s):  
W.B.A. (SANDY) SHARP ◽  
W.J. JIM FREDERICK ◽  
JAMES R. KEISER ◽  
DOUGLAS L. SINGBEIL

The efficiencies of biomass-fueled power plants are much lower than those of coal-fueled plants because they restrict their exit steam temperatures to inhibit fireside corrosion of superheater tubes. However, restricting the temperature of a given mass of steam produced by a biomass boiler decreases the amount of power that can be generated from this steam in the turbine generator. This paper examines the relationship between the temperature of superheated steam produced by a boiler and the quantity of power that it can generate. The thermodynamic basis for this relationship is presented, and the value of the additional power that could be generated by operating with higher superheated steam temperatures is estimated. Calculations are presented for five plants that produce both steam and power. Two are powered by black liquor recovery boilers and three by wood-fired boilers. Steam generation parameters for these plants were supplied by industrial partners. Calculations using thermodynamics-based plant simulation software show that the value of the increased power that could be generated in these units by increasing superheated steam temperatures 100°C above current operating conditions ranges between US$2,410,000 and US$11,180,000 per year. The costs and benefits of achieving higher superheated steam conditions in an individual boiler depend on local plant conditions and the price of power. However, the magnitude of the increased power that can be generated by increasing superheated steam temperatures is so great that it appears to justify the cost of corrosion-mitigation methods such as installing corrosion-resistant materials costing far more than current superheater alloys; redesigning biomassfueled boilers to remove the superheater from the flue gas path; or adding chemicals to remove corrosive constituents from the flue gas. The most economic pathways to higher steam temperatures will very likely involve combinations of these methods. Particularly attractive approaches include installing more corrosion-resistant alloys in the hottest superheater locations, and relocating the superheater from the flue gas path to an externally-fired location or to the loop seal of a circulating fluidized bed boiler.


2020 ◽  
Vol 3 (2) ◽  
pp. 781-790
Author(s):  
M. Rizwan Akram ◽  
Ali Yesilyurt ◽  
A.Can. Zulfikar ◽  
F. Göktepe

Research on buried gas pipelines (BGPs) has taken an important consideration due to their failures in recent earthquakes. In permanent ground deformation (PGD) hazards, seismic faults are considered as one of the major causes of BGPs failure due to accumulation of impermissible tensile strains. In current research, four steel pipes such as X-42, X-52, X-60, and X-70 grades crossing through strike-slip, normal and reverse seismic faults have been investigated. Firstly, failure of BGPs due to change in soil-pipe parameters have been analyzed. Later, effects of seismic fault parameters such as change in dip angle and angle between pipe and fault plane are evaluated. Additionally, effects due to changing pipe class levels are also examined. The results of current study reveal that BGPs can resist until earthquake moment magnitude of 7.0 but fails above this limit under the assumed geotechnical properties of current study. In addition, strike-slip fault can trigger early damage in BGPs than normal and reverse faults. In the last stage, an early warning system is proposed based on the current procedure. 


Sign in / Sign up

Export Citation Format

Share Document