scholarly journals Mitigation of nitrous oxide emissions in the context of nitrogen loss reduction from agroecosystems: managing hot spots and hot moments

2020 ◽  
Vol 47 ◽  
pp. 46-53 ◽  
Author(s):  
Claudia Wagner-Riddle ◽  
Elizabeth M Baggs ◽  
Tim J Clough ◽  
Kathrin Fuchs ◽  
Søren O Petersen
1984 ◽  
Vol 64 (2) ◽  
pp. 187-194 ◽  
Author(s):  
L. L. GOODROAD ◽  
D. R. KEENEY

We, as well as others, have observed that nitrous oxide (N2O) fluxes increased markedly during soil thaw in early spring. This phenomenon was examined further by determining nitrous oxide concentrations in the soil profile and N2O fluxes from the soil surface during the winter-spring period and evaluating physical release and microbial production of N2O on thawing of frozen soil cores in the laboratory. In mid-winter, soil profile N2O concentrations were close to ambient and surface N2O fluxes were low. At thawing, high N2O concentrations (ranging from 1082 to 2066 mg∙m−3) were found at 10–30 cm in the soil profiles of a coniferous forest, and in manure- and straw-treated plots. Concurrently, N2O flux increased markedly and reached some of the highest values observed during the entire season. When thawing was complete, soil profile N2O concentrations and N2O flux declined. Soil cores were taken from frozen soil, warmed in the laboratory, and N2O release measured. Nitrous oxide was released on warming, and cores treated with CHCl3 had a slower release rate. The results indicate that some of the N2O flux occurring at thawing is due in part to physical release of N2O, and that additional N2O is likely produced by denitrification. Key words: Nitrous oxide, denitrification, frozen soils, nitrogen loss


2011 ◽  
Vol 17 (8) ◽  
pp. 2601-2614 ◽  
Author(s):  
M. E. MARUSHCHAK ◽  
A. PITKÄMÄKI ◽  
H. KOPONEN ◽  
C. BIASI ◽  
M. SEPPÄLÄ ◽  
...  

2018 ◽  
Vol 123 (1) ◽  
pp. 193-206 ◽  
Author(s):  
Debasish Saha ◽  
Armen R. Kemanian ◽  
Felipe Montes ◽  
Heather Gall ◽  
Paul R. Adler ◽  
...  

2011 ◽  
Vol 37 (9) ◽  
pp. 1666-1675
Author(s):  
Hai-Ming TANG ◽  
Xiao-Ping XIAO ◽  
Wen-Guang TANG ◽  
Guang-Li YANG

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Khadim Dawar ◽  
Shah Fahad ◽  
M. M. R. Jahangir ◽  
Iqbal Munir ◽  
Syed Sartaj Alam ◽  
...  

AbstractIn this study, we explored the role of biochar (BC) and/or urease inhibitor (UI) in mitigating ammonia (NH3) and nitrous oxide (N2O) discharge from urea fertilized wheat cultivated fields in Pakistan (34.01°N, 71.71°E). The experiment included five treatments [control, urea (150 kg N ha−1), BC (10 Mg ha−1), urea + BC and urea + BC + UI (1 L ton−1)], which were all repeated four times and were carried out in a randomized complete block design. Urea supplementation along with BC and BC + UI reduced soil NH3 emissions by 27% and 69%, respectively, compared to sole urea application. Nitrous oxide emissions from urea fertilized plots were also reduced by 24% and 53% applying BC and BC + UI, respectively, compared to urea alone. Application of BC with urea improved the grain yield, shoot biomass, and total N uptake of wheat by 13%, 24%, and 12%, respectively, compared to urea alone. Moreover, UI further promoted biomass and grain yield, and N assimilation in wheat by 38%, 22% and 27%, respectively, over sole urea application. In conclusion, application of BC and/or UI can mitigate NH3 and N2O emissions from urea fertilized soil, improve N use efficiency (NUE) and overall crop productivity.


Eos ◽  
2008 ◽  
Vol 89 (51) ◽  
pp. 529 ◽  
Author(s):  
Stephen J. Del Grosso ◽  
Tom Wirth ◽  
Stephen M. Ogle ◽  
William J. Parton

2021 ◽  
Author(s):  
Debasish Saha ◽  
Jason P. Kaye ◽  
Arnab Bhowmik ◽  
Mary Ann Bruns ◽  
John M. Wallace ◽  
...  

2021 ◽  
Author(s):  
Arezoo Taghizadeh-Toosi ◽  
Baldur Janz ◽  
Rodrigo Labouriau ◽  
Jørgen E. Olesen ◽  
Klaus Butterbach-Bahl ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document