soil n availability
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 15)

H-INDEX

19
(FIVE YEARS 3)

age ◽  
2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Rashad S. Alghamdi ◽  
Larry Cihacek ◽  
Aaron Lee M. Daigh ◽  
Shafiqur Rahman

Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1799
Author(s):  
Nur Hidayah Hamidi ◽  
Osumanu Haruna Ahmed ◽  
Latifah Omar ◽  
Huck Ywih Ch'ng

Highly weathered tropical acidic soils are characterized by low pH, low organic matter, and aluminium and iron toxicity. These factors pose a challenge to achieving sustainable agriculture. The continued increase in the human population with the accompanied increasing food demand have negatively impacted the global N cycle partly because of excessive use N fertilizers particularly urea which is commonly used in agriculture. Ammonia volatilization from urea as an example, negatives the environmental quality. This study focuses on soil-N availability, pH, exchangeable acidity, Al3+, and H+ of a highly weathered acid soils (Bekenu series) through the combined use of charcoal, sago bark ash, and urea. To this end, an incubation study was conducted for 90 days through the combined use of charcoal, sago bark ash, and urea to determine if this approach could improve soil N availability and pH at the same time reducing exchangeable acidity, and Al3+, and H+ toxicity. The amount of urea used was fixed at 100% as the recommended rate. Charcoal and sago bark ash were varied by 25%, 50%, 75%, and 100%, respectively of the recommended rate. Selected soil physico-chemical properties were determined using standard procedures. This study revealed that combined use of charcoal, sago bark ash, and urea increased soil pH and base cations simultaneously the approach also reduced exchangeable acidity, exchangeable Al3+, and exchangeable H+. There were no significant differences in soil total N, exchangeable NH4+, and available NO3− for the combined use of charcoal, sago bark ash, and urea and urea alone because of the acid neutralizing effect of the amendments. Apart from the sago bark ash’s liming effect, the high affinity of the functional groups of the charcoal for Al3+ might have impeded Al3+ from undergoing hydrolysis to produce more H+ because a complete one mole of Al3+ hydrolysis produces three moles of H+. Thus, the combined use of charcoal and sago bark ash can mitigate soil acidity and aluminium toxicity, although this approach has minimal effect on-N.


Land ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 840
Author(s):  
Julian Cardenas ◽  
Fernando Santa ◽  
Eva Kaštovská

The rhizosphere is a hot spot of soil microbial activity and is largely fed by root exudation. The carbon (C) exudation flux, coupled with plant growth, is considered a strategy of plants to facilitate nutrient uptake. C exudation is accompanied by a release of nutrients. Nitrogen (N) and phosphorus (P) co-limit the productivity of the plant-microbial system. Therefore, the C:N:P stoichiometry of exudates should be linked to plant nutrient economies, plant functional traits (PFT) and soil nutrient availability. We aimed to identify the strongest links in C:N:P stoichiometry among all rhizosphere components. A total of eight grass species (from conservative to exploitative) were grown in pots under two different soil C:nutrient conditions for a month. As a result, a wide gradient of plant–microbial–soil interactions were created. A total of 43 variables of plants, exudates, microbial and soil C:N:P stoichiometry, and PFTs were evaluated. The variables were merged into four groups in a network analysis, allowing us to identify the strongest connections among the variables and the biological meaning of these groups. The plant–soil interactions were shaped by soil N availability. Faster-growing plants were associated with lower amounts of mineral N (and P) in the soil solution, inducing a stronger competition for N with microorganisms in the rhizosphere compared to slower-growing plants. The plants responded by enhancing their N use efficiency and root:shoot ratio, and they reduced N losses via exudation. Root growth was supported either by reallocated foliar reserves or by enhanced ammonium uptake, which connected the specific leaf area (SLA) to the mineral N availability in the soil. Rapid plant growth enhanced the exudation flux. The exudates were rich in C and P relative to N compounds and served to release surplus metabolic products. The exudate C:N:P stoichiometry and soil N availability combined to shape the microbial stoichiometry, and N and P mining. In conclusion, the exudate flux and its C:N:P stoichiometry reflected the plant growth rate and nutrient constraints with a high degree of reliability. Furthermore, it mediated the plant–microbial interactions in the rhizosphere.


2021 ◽  
Author(s):  
Arezoo Taghizadeh-Toosi ◽  
Baldur Janz ◽  
Rodrigo Labouriau ◽  
Jørgen E. Olesen ◽  
Klaus Butterbach-Bahl ◽  
...  

2021 ◽  
Vol 13 (10) ◽  
pp. 5649
Author(s):  
Giovani Preza-Fontes ◽  
Junming Wang ◽  
Muhammad Umar ◽  
Meilan Qi ◽  
Kamaljit Banger ◽  
...  

Freshwater nitrogen (N) pollution is a significant sustainability concern in agriculture. In the U.S. Midwest, large precipitation events during winter and spring are a major driver of N losses. Uncertainty about the fate of applied N early in the growing season can prompt farmers to make additional N applications, increasing the risk of environmental N losses. New tools are needed to provide real-time estimates of soil inorganic N status for corn (Zea mays L.) production, especially considering projected increases in precipitation and N losses due to climate change. In this study, we describe the initial stages of developing an online tool for tracking soil N, which included, (i) implementing a network of field trials to monitor changes in soil N concentration during the winter and early growing season, (ii) calibrating and validating a process-based model for soil and crop N cycling, and (iii) developing a user-friendly and publicly available online decision support tool that could potentially assist N fertilizer management. The online tool can estimate real-time soil N availability by simulating corn growth, crop N uptake, soil organic matter mineralization, and N losses from assimilated soil data (from USDA gSSURGO soil database), hourly weather data (from National Weather Service Real-Time Mesoscale Analysis), and user-entered crop management information that is readily available for farmers. The assimilated data have a resolution of 2.5 km. Given limitations in prediction accuracy, however, we acknowledge that further work is needed to improve model performance, which is also critical for enabling adoption by potential users, such as agricultural producers, fertilizer industry, and researchers. We discuss the strengths and limitations of attempting to provide rapid and cost-effective estimates of soil N availability to support in-season N management decisions, specifically related to the need for supplemental N application. If barriers to adoption are overcome to facilitate broader use by farmers, such tools could balance the need for ensuring sufficient soil N supply while decreasing the risk of N losses, and helping increase N use efficiency, reduce pollution, and increase profits.


2021 ◽  
Author(s):  
Song Wang ◽  
Quan Quan ◽  
Cheng Meng ◽  
Weinan Chen ◽  
Yiqi Luo ◽  
...  

Abstract Aims Terrestrial ecosystem carbon (C) uptake is remarkably regulated by nitrogen (N) availability in the soil. However, the coupling of C and N cycles, as reflected by C:N ratios in different components, has not been well explored in response to climate change. Methods Here, we applied a data assimilation approach to assimilate 14 data sets collected from a warming experiment in an alpine meadow in China into a grassland ecosystem model. We attempted to evaluate how experimental warming affects C and N coupling as indicated by constrained parameters under ambient and warming treatments separately. Important Findings The results showed that warming increased soil N availability with decreased C:N ratio in soil labile C pool, leading to an increase in N uptake by plants. Nonetheless, C input to leaf increased more than N, leading to an increase and a decrease in the C:N ratio in leaf and root, respectively. Litter C:N ratio was decreased due to the increased N immobilization under high soil N availability or warming-accelerated decomposition of litter mass. Warming also increased C:N ratio of slow soil organic matter pool, suggesting a greater soil C sequestration potential. As most models usually use a fixed C:N ratio across different environments, the divergent shifts of C:N ratios under climate warming detected in this study could provide a useful benchmark for model parameterization and benefit models to predict C-N coupled responses to future climate change.


2019 ◽  
Vol 9 (21) ◽  
pp. 4481 ◽  
Author(s):  
Figueiredo ◽  
Coser ◽  
Moreira ◽  
Leão ◽  
Vale ◽  
...  

Biochar has been presented as a multifunctional material with short- and long-term agro-environmental benefits, including soil organic matter stabilization, improved nutrient cycling, and increased primary productivity. However, its turnover time, when applied to soil, varies greatly depending on feedstock and pyrolysis temperature. For sewage sludge-derived biochars, which have high N contents, there is still a major uncertainty regarding the influence of pyrolysis temperatures on soil carbon mineralization and its relationship to soil N availability. Sewage sludge and sewage sludge-derived biochars produced at 300 °C (BC300), 400 °C (BC400), and 500 °C (BC500) were added to an Oxisol in a short-term incubation experiment. Carbon mineralization and nitrogen availability (N-NH4+ and N-NO3−) were studied using a first-order model. BC300 and BC400 showed higher soil C mineralization rates and N-NH4+ contents, demonstrating their potential to be used for plant nutrition. Compared to the control, the cumulative C-CO2 emissions increased by 60–64% when biochars BC300 and BC400 were applied to soil. On the other hand, C-CO2 emissions decreased by 6% after the addition of BC500, indicating the predominance of recalcitrant compounds, which results in a lower supply of soil N-NH4+ (83.4 mg kg−1) in BC500, being 67% lower than BC300 (255.7 mg kg−1). Soil N availability was strongly influenced by total N, total C, C/N ratio, H, pore volume, and specific surface area in the biochars.


Sign in / Sign up

Export Citation Format

Share Document