Sub-5-fs spectroscopy of a thiophene derivative with a quinoid structure

2006 ◽  
Vol 426 (1-3) ◽  
pp. 105-110 ◽  
Author(s):  
Takayoshi Kobayashi ◽  
Haibo Wang ◽  
Zhuan Wang ◽  
Tetsuo Otsubo
2020 ◽  
Vol 24 ◽  
Author(s):  
Hubert Hettegger ◽  
Andreas Hofinger ◽  
Thomas Rosenau

: The regioselectivity of the reaction of 2,5-dihydroxy-[1,4]-benzoquinone (DHBQ) with diamines could not be explained satisfactorily so far. In general, the reaction products can be derived from the tautomeric ortho-quinoid structure of a hypothetical 4,5-dihydroxy-[1,2]-benzoquinone. However, both aromatic and aliphatic 1,2-diamines form in some cases phenazines, formally by diimine formation on the quinoid carbonyl groups, and in other cases the corresponding 1,2- diamino-[1,2]-benzoquinones, by nucleophilic substitution of the OH groups, the regioselectivity apparently not following any discernible pattern. The reactivity was now explained by an adapted theory of strain-induced bond localization (SIBL). Here, the preservation of the "natural" geometry of the two quinoid C–C double bonds (C3=C4 and C5=C6) as well as the N–N distance of the co-reacting diamine are crucial. A decrease of the annulation angle sum (N–C4–C5 + C4–C5–N) is tolerated well and the 4,5-diamino-ortho-quinones, having relatively short N–N spacings are formed. An increase in the angular sum is energetically unfavorable, so that diamines with a larger N–N distance afford the corresponding ortho-quinone imines. Thus, for the reaction of DHBQ with diamines, exact predictions of the regioselectivity, and the resulting product structure, can be made on the basis of simple computations of bond spacings and product geometries.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3365
Author(s):  
Ben-Zhan Zhu ◽  
Miao Tang ◽  
Chun-Hua Huang ◽  
Li Mao

Polyhaloaromatic compounds (XAr) are ubiquitous and recalcitrant in the environment. They are potentially carcinogenic to organisms and may induce serious risks to the ecosystem, raising increasing public concern. Therefore, it is important to detect and quantify these ubiquitous XAr in the environment, and to monitor their degradation kinetics during the treatment of these recalcitrant pollutants. We have previously found that unprecedented intrinsic chemiluminescence (CL) can be produced by a haloquinones/H2O2 system, a newly-found ●OH-generating system different from the classic Fenton system. Recently, we found that the degradation of priority pollutant pentachlorophenol by the classic Fe(II)-Fenton system could produce intrinsic CL, which was mainly dependent on the generation of chloroquinone intermediates. Analogous effects were observed for all nineteen chlorophenols, other halophenols and several classes of XAr, and a novel, rapid and sensitive CL-based analytical method was developed to detect these XAr and monitor their degradation kinetics. Interestingly, for those XAr with halohydroxyl quinoid structure, a Co(II)-mediated Fenton-like system could induce a stronger CL emission and higher degradation, probably due to site-specific generation of highly-effective ●OH. These findings may have broad chemical and environmental implications for future studies, which would be helpful for developing new analytical methods and technologies to investigate those ubiquitous XAr.


2018 ◽  
Vol 108 ◽  
pp. 1670-1678
Author(s):  
Klinger Antonio da Franca Rodrigues ◽  
Daiana Karla Frade Silva ◽  
Vanessa de Lima Serafim ◽  
Patrícia Néris Andrade ◽  
Adriano Francisco Alves ◽  
...  

2018 ◽  
Vol 30 (23) ◽  
pp. 8426-8430 ◽  
Author(s):  
Chao Ma ◽  
Liang Wu ◽  
Zhao Jin ◽  
Xin-Yang Zhao ◽  
Yu-Si Liu ◽  
...  

1977 ◽  
Vol 8 (16) ◽  
pp. no-no
Author(s):  
O. S. KSENZHEK ◽  
S. A. PETROVA ◽  
S. V. OLEINIK ◽  
M. V. KOLODYAZHNYI ◽  
V. Z. MOSKOVSKII

2009 ◽  
Vol 74 (3) ◽  
pp. 289-296 ◽  
Author(s):  
Si Yan Liao ◽  
Tao Ju Chen ◽  
Ti Fang Miao ◽  
Li Qian ◽  
Kang Cheng Zheng

Author(s):  
LIPSA SAMAL ◽  
AMARESH PRUSTY

Objective: The aim of the present work was to develop and validate a simple UV spectroscopic method for the determination of duloxetine, which is a thiophene derivative and a selective neurotransmitter reuptake inhibitor for serotonin, norepinephrine, and to lesser degree dopamine. Methods: The UV Spectrophotometric analysis was performed using Shimadzu UV-1800 and Shimadzu UV-1700 spectrophotometer by using solvent system acetonitrile and water in the ratio of 8:2. Detection was performed at a wavelength of 290 nm. Method validation was carried out according to ICH Q2R1 guidelines by taking the parameters linearity, accuracy, precision, ruggedness, and robustness, LOD and LOQ. Results: The UV Spectrophotometric method was found linear in the range of 10-50 μg/ml. The method was rugged and robust with % relative standard deviation less than 2. The extraction recoveries were found to be higher than 99% in all experimental conditions. Conclusion: Based upon the performance characteristics, the proposed method was found accurate, precise and rapid and suitable for the determination of Duloxetine for routine analysis.


Sign in / Sign up

Export Citation Format

Share Document