Determination of the modified ‘affinity index’ of small ligands and macromolecular receptors from NMR spin-lattice relaxation data

2007 ◽  
Vol 447 (1-3) ◽  
pp. 147-153 ◽  
Author(s):  
Silvia Martini ◽  
Claudia Bonechi ◽  
Gianfranco Corbini ◽  
Claudio Rossi
2020 ◽  
Vol 44 (44) ◽  
pp. 19393-19403
Author(s):  
Krishna Kishor Dey ◽  
Manasi Ghosh

The correlation between the structure and dynamics of omeprazole is portrayed by extracting CSA parameters through the 13C 2DPASS CP-MAS SSNMR experiment, site specific spin–lattice relaxation time by Torchia CP experiment, and calculation of the molecular correlation time.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Alexander V. Skripov ◽  
Olga A. Babanova ◽  
Roman V. Skoryunov ◽  
Alexei V. Soloninin ◽  
Terrence J. Udovic

Abstract Polyhydroborate-based salts of lithium and sodium have attracted much recent interest as promising solid-state electrolytes for energy-related applications. A member of this family, sodium dicarba-nido-undecahydroborate Na-7,9-C2B9H12 exhibits superionic conductivity above its order-disorder phase transition temperature, ∼360 K. To investigate the dynamics of the anions and cations in this compound at the microscopic level, we have measured the 1H and 23Na nuclear magnetic resonance (NMR) spectra and spin-lattice relaxation rates over the temperature range of 148–384 K. It has been found that the transition from the low-T ordered to the high-T disordered phase is accompanied by an abrupt, several-orders-of-magnitude acceleration of both the reorientational jump rate of the complex anions and the diffusive jump rate of Na+ cations. These results support the idea that reorientations of large [C2B9H12]− anions can facilitate cation diffusion and, thus, the ionic conductivity. The apparent activation energies for anion reorientations obtained from the 1H spin-lattice relaxation data are 314 meV for the ordered phase and 272 meV for the disordered phase. The activation energies for Na+ diffusive jumps derived from the 23Na spin-lattice relaxation data are 350 and 268 meV for the ordered and disordered phases, respectively.


1980 ◽  
Vol 58 (19) ◽  
pp. 2016-2023 ◽  
Author(s):  
Lawrence D. Colebrook ◽  
Laurance D. Hall

A general discussion is given of the determination of the proton spin–lattice relaxation rates of natural products, with particular emphasis on use of the null-point method which, for the systems studied here, gives identical results with those obtained via the conventional (and relatively time consuming) computational method.


1980 ◽  
Vol 3 ◽  
Author(s):  
W. H. M. Alsem ◽  
J. Th. ◽  
M. De Hosson ◽  
H. Tamler ◽  
H. J. HackelÖEr ◽  
...  

ABSTRACTDislocation motion in alkali halide single crystals is strongly impeded by the presence of impurities, apart from obstacles built by the forest dislocations. The mean free path L of stepwise moving dislocations is measured by determination of the spin-lattice relaxation rate 1/T1ρ as a function of the strain rate έ, varying the content of impurities and the temperature. The latter influences the distribution of the point defects and the activation rate of dislocations before obstacles, while the former merely shorten L, thereby raising 1/T1ρ.


2015 ◽  
Vol 17 (43) ◽  
pp. 28866-28878 ◽  
Author(s):  
Piotr Bernatowicz ◽  
Aleksander Shkurenko ◽  
Agnieszka Osior ◽  
Bohdan Kamieński ◽  
Sławomir Szymański

The issue of nuclear spin–lattice relaxation in methyl groups in solids has been a recurring problem in NMR spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document