Isotope effects on the spin-density distribution in the H6+ clusters: Direct ab initio molecular dynamics study

2008 ◽  
Vol 455 (1-3) ◽  
pp. 59-63 ◽  
Author(s):  
Yuzuru Kurosaki ◽  
Yuta Shimizu ◽  
Jun Kumagai
2014 ◽  
Vol 70 (a1) ◽  
pp. C1085-C1085
Author(s):  
Javier Campo ◽  
Javier Luzon ◽  
Laura Cañadillas ◽  
Naoki Amaya ◽  
Fernando Palacio ◽  
...  

Purely organic magnets, materials with spontaneous magnetization despite no containing magnetic ions, are very promising for technological applications due to their peculiar properties as flexibility, lightness or even biocompatibility. Most of the published purely organic magnets are free radical compounds. One of the most important difficulties in order to get spontaneous magnetization in such materials is that magnetic interactions among free radicals are usually antiferromagnetic and, in addition, ferromagnetic interactions are weaker than the antiferromagnetic ones. A possible strategy to overcome this issue is the use of triradical molecules with total spin S=1/2. In this case, an adequate packing of the triradical molecules can give place to antiferromagnetic interactions between regions with positive spin density and regions with negative spin density of two close molecules. This antiferromagnetic interaction between regions with opposite spin density would result in an overall ferromagnetic interaction between the two close triradicals. With this idea in mind we have performed an study of the spin density distribution and of the intramolecular and intermolecular magnetic interactions of the triradical compound 2-[3',5'-bis(Ntert-butylaminoxyl)phenyl]-4,4,5,5-tetramethyl-4,5-dihydro-1-Himidazol-1-oxyl-3-oxide, containing two N-tert-butyl aminoxyls and a nitronyl nitroxide groups. Combination of experimental data from a polarized neutron diffraction experiment and ab initio calculations (DFT) has allowed us to obtain the spin density distribution. In addition, the intramolecular and intermolecular magnetic interactions have been computed by ab initio quantum chemistry methods. The values for the intramolecular interactions confirm the S=1/2 ground state of the triradical. As for the intermolecular interactions, the two strongest ones are ferromagnetic, what is in agreement with the overlapping of regions with opposite spin density of the two interacting triradicals. These results support the strategy of using triradical molecules for obtaining purely organic magnets with higher magnetic transition ordering temperatures since is easier to obtain ferromagnetic interactions between the radicals and these interactions, having an antiferromagnetic origin, can be stronger than typical ferromagnetic interactions between radicals.


2019 ◽  
Author(s):  
Liqun Cao ◽  
Jinzhe Zeng ◽  
Mingyuan Xu ◽  
Chih-Hao Chin ◽  
Tong Zhu ◽  
...  

Combustion is a kind of important reaction that affects people's daily lives and the development of aerospace. Exploring the reaction mechanism contributes to the understanding of combustion and the more efficient use of fuels. Ab initio quantum mechanical (QM) calculation is precise but limited by its computational time for large-scale systems. In order to carry out reactive molecular dynamics (MD) simulation for combustion accurately and quickly, we develop the MFCC-combustion method in this study, which calculates the interaction between atoms using QM method at the level of MN15/6-31G(d). Each molecule in systems is treated as a fragment, and when the distance between any two atoms in different molecules is greater than 3.5 Å, a new fragment involved two molecules is produced in order to consider the two-body interaction. The deviations of MFCC-combustion from full system calculations are within a few kcal/mol, and the result clearly shows that the calculated energies of the different systems using MFCC-combustion are close to converging after the distance thresholds are larger than 3.5 Å for the two-body QM interactions. The methane combustion was studied with the MFCC-combustion method to explore the combustion mechanism of the methane-oxygen system.


Sign in / Sign up

Export Citation Format

Share Document