scholarly journals Tuning the branching ratio in a symmetric potential energy surface with a post-transition state bifurcation using external time dependence

2020 ◽  
Vol 754 ◽  
pp. 137714
Author(s):  
V.J. García-Garrido ◽  
M. Katsanikas ◽  
M. Agaoglou ◽  
S. Wiggins
2020 ◽  
Author(s):  
Shi Jun Ang ◽  
Wujie Wang ◽  
Daniel Schwalbe-Koda ◽  
Simon Axelrod ◽  
Rafael Gomez-Bombarelli

<div>Modeling dynamical effects in chemical reactions, such as post-transition state bifurcation, requires <i>ab initio</i> molecular dynamics simulations due to the breakdown of simpler static models like transition state theory. However, these simulations tend to be restricted to lower-accuracy electronic structure methods and scarce sampling because of their high computational cost. Here, we report the use of statistical learning to accelerate reactive molecular dynamics simulations by combining high-throughput ab initio calculations, graph-convolution interatomic potentials and active learning. This pipeline was demonstrated on an ambimodal trispericyclic reaction involving 8,8-dicyanoheptafulvene and 6,6-dimethylfulvene. With a dataset size of approximately</div><div>31,000 M062X/def2-SVP quantum mechanical calculations, the computational cost of exploring the reactive potential energy surface was reduced by an order of magnitude. Thousands of virtually costless picosecond-long reactive trajectories suggest that post-transition state bifurcation plays a minor role for the reaction in vacuum. Furthermore, a transfer-learning strategy effectively upgraded the potential energy surface to higher</div><div>levels of theory ((SMD-)M06-2X/def2-TZVPD in vacuum and three other solvents, as well as the more accurate DLPNO-DSD-PBEP86 D3BJ/def2-TZVPD) using about 10% additional calculations for each surface. Since the larger basis set and the dynamic correlation capture intramolecular non-covalent interactions more accurately, they uncover longer lifetimes for the charge-separated intermediate on the more accurate potential energy surfaces. The character of the intermediate switches from entropic to thermodynamic upon including implicit solvation effects, with lifetimes increasing with solvent polarity. Analysis of 2,000 reactive trajectories on the chloroform PES shows a qualitative agreement with the experimentally-reported periselectivity for this reaction. This overall approach is broadly applicable and opens a door to the study of dynamical effects in larger, previously-intractable reactive systems.</div>


2019 ◽  
Vol 21 (3) ◽  
pp. 1408-1416 ◽  
Author(s):  
Junxiang Zuo ◽  
Qixin Chen ◽  
Xixi Hu ◽  
Hua Guo ◽  
Daiqian Xie

A global potential energy surface for the O(3P) + C2H2reaction is developed and the quasi-classical trajectory study on the potential energy surface reproduce the rate coefficient and product branching ratio.


1997 ◽  
Vol 101 (4) ◽  
pp. 694-704 ◽  
Author(s):  
Akiyoshi Hishikawa ◽  
Kyoko Ohde ◽  
Ryuji Itakura ◽  
Shilin Liu ◽  
Kaoru Yamanouchi ◽  
...  

2021 ◽  
Vol 31 (14) ◽  
Author(s):  
M. Katsanikas ◽  
M. Agaoglou ◽  
S. Wiggins

In this work, we analyze the bifurcation of dividing surfaces that occurs as a result of a pitchfork bifurcation of periodic orbits in a two degrees of freedom Hamiltonian System. The potential energy surface of the system that we consider has four critical points: two minima, a high energy saddle and a lower energy saddle separating two wells (minima). In this paper, we study the structure, the range, and the minimum and maximum extent of the periodic orbit dividing surfaces of the family of periodic orbits of the lower saddle as a function of the total energy.


Sign in / Sign up

Export Citation Format

Share Document