Comparison of 80 and 120 kVp contrast-enhanced CT for attenuation correction in PET/CT, using quantitative analysis and reporter assessment of PET image quality

2014 ◽  
Vol 69 (1) ◽  
pp. e17-e24 ◽  
Author(s):  
H. Bernstine ◽  
V. Sopov ◽  
N. Yefremov ◽  
M. Nidam ◽  
M. Gabbai ◽  
...  
2014 ◽  
Vol 35 (5) ◽  
pp. 472-477 ◽  
Author(s):  
Edwin E.G.W. ter Voert ◽  
Hanneke W.M. van Laarhoven ◽  
Peter J.M. Kok ◽  
Wim J.G. Oyen ◽  
Eric P. Visser ◽  
...  

2019 ◽  
Vol 59 (01) ◽  
pp. 20-25
Author(s):  
Sabine Garpered ◽  
David Minarik ◽  
Sophia Frantz ◽  
Sven Valind ◽  
Per Wollmer

Abstract Aim To determine how the presence of intravenous (IV) contrast-enhanced CT influences SUV measurements corrected for both attenuation and tissue fraction. Material and Methods Eighteen patients with different malignancies, free from lung disorders, lung cancer or metastasis, were prospectively recruited when referred for staging with combined 18F-FDG-PET/CT examination. A non-enhanced low-dose CT over the chest was immediately followed by a whole-body IV contrast-enhanced diagnostic CT and finally the PET acquisition. PET data were reconstructed with attenuation correction based on the two CT data sets. The lungs were segmented in the CT images and lung density was measured. Uptake of 18F-FDG in lung parenchyma was recorded using both non-enhanced and IV contrast-enhanced CT as well as with and without compensation for lung aeration. A comparison of SUV values of corrected and uncorrected PET images was performed. Results There was no significant difference between low dose PET/CT and IV contrast-enhanced PET/CT when removing the impact of air fraction (p = 0.093 for the right lung and p = 0.085 for the left lung). When tissue fraction was not corrected for, there was a significant difference between low dose PET/CT and IV contrast enhanced PET/CT used for attenuation correction (p = 0.006 for the right lung and p = 0.015 for the left lung). Conclusion There was only a marginal effect on the assessement of SUV in the lung tissue when using IV contrast enhanced CT for attenuation correction when the air fraction was accounted for.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii93-ii93
Author(s):  
Kate Connor ◽  
Emer Conroy ◽  
Kieron White ◽  
Liam Shiels ◽  
William Gallagher ◽  
...  

Abstract Despite magnetic resonance imaging (MRI) being the gold-standard imaging modality in the glioblastoma (GBM) setting, the availability of rodent MRI scanners is relatively limited. CT is a clinically relevant alternative which is more widely available in the pre-clinic. To study the utility of contrast-enhanced (CE)-CT in GBM xenograft modelling, we optimized CT protocols on two instruments (IVIS-SPECTRUM-CT;TRIUMPH-PET/CT) with/without delivery of contrast. As radiomics analysis may facilitate earlier detection of tumors by CT alone, allowing for deeper analyses of tumor characteristics, we established a radiomic pipeline for extraction and selection of tumor specific CT-derived radiomic features (inc. first order statistics/texture features). U87R-Luc2 GBM cells were implanted orthotopically into NOD/SCID mice (n=25) and tumor growth monitored via weekly BLI. Concurrently mice underwent four rounds of CE-CT (IV iomeprol/iopamidol; 50kV-scan). N=45 CE-CT images were semi-automatically delineated and radiomic features were extracted (Pyradiomics 2.2.0) at each imaging timepoint. Differences between normal and tumor tissue were analyzed using recursive selection. Using either CT instrument/contrast, tumors > 0.4cm3 were not detectable until week-9 post-implantation. Radiomic analysis identified three features (waveletHHH_firstorder_Median, original_glcm_Correlation and waveletLHL_firstorder_Median) at week-3 and -6 which may be early indicators of tumor presence. These features are now being assessed in CE-CT scans collected pre- and post-temozolomide treatment in a syngeneic model of mesenchymal GBM. Nevertheless, BLI is significantly more sensitive than CE-CT (either visually or using radiomic-enhanced CT feature extraction) with luciferase-positive tumors detectable at week-1. In conclusion, U87R-Luc2 tumors > 0.4cm3 are only detectable by Week-8 using CE-CT and either CT instrument studied. Nevertheless, radiomic analysis has defined features which may allow for earlier tumor detection at Week-3, thus expanding the utility of CT in the preclinical setting. Overall, this work supports the discovery of putative prognostic pre-clinical CT-derived radiomic signatures which may ultimately be assessed as early disease markers in patient datasets.


Diagnostics ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1198
Author(s):  
Jean-Baptiste Le Goubey ◽  
Charline Lasnon ◽  
Ines Nakouri ◽  
Laure Césaire ◽  
Michel de Pontville ◽  
...  

Aim: To perform a comprehensive analysis of discordances between contrast-enhanced CT (ceCT) and 18F-FDG PET/CT in the evaluation of the extra-cerebral treatment monitoring in patients with stage IV melanoma. Materials and methods: We conducted a retrospective monocentric observational study over a 3-year period in patients referred for 18F-FDG PET/CT and ceCT in the framework of therapy monitoring of immune checkpoint (ICIs) as of January 2017. Imaging reports were analyzed by two physicians in consensus. The anatomical site responsible for discordances, as well as induced changes in treatment were noted. Results: Eighty patients were included and 195 pairs of scans analyzed. Overall, discordances occurred in 65 cases (33%). Eighty percent of the discordances (52/65) were due to 18F-FDG PET/CT scans upstaging the patient. Amongst these discordances, 17/52 (33%) led to change in patient’s management, the most frequent being radiotherapy of a progressing site. ceCT represented 13/65 (20%) of discordances and induced changes in patients’ management in 2/13 cases (15%). The most frequent anatomical site involved was subcutaneous for 18F-FDG PET/CT findings and lung or liver for ceCT. Conclusions: Treatment monitoring with 18F-FDG PET/CT is more efficient than ceCT and has a greater impact in patient’s management.


2022 ◽  
Author(s):  
Inés Califano ◽  
Fabian Pitoia ◽  
Roxana Chirico ◽  
Alejandra de Salazar ◽  
Maria Bastianello

Abstract Purpose 18F-DOPA Positron Emission Tomography/Computed Tomography (18F-DOPA PET/CT) is a sensitive functional imaging method (65-75%) for detecting disease localization in medullary thyroid cancer (MTC). We aimed: i) to assess the clinical usefulness of 18F-DOPA PET/CT in patients with MTC and elevated calcitonin (Ctn) and CEA levels and, ii) to evaluate changes in disease management secondary to the findings encountered with this methodology. Methods thirty-six patients with MTC and Ctn levels ≥150 pg/ml were prospectively included. Neck ultrasound, chest contrast-enhanced CT, liver magnetic resonance imaging/ abdominal 3-phase contrast-enhanced CT and bone scintigraphy were carried out up to 6 months before the 18F DOPA PET/CT. Results 77.7% were female and 27% had hereditary MTC. Median Ctn level was 1450 pg/ml [150-56620], median CEA level 413 ng/ml [2.9-7436]. Median Ctn DT was 37.5 months [5.7-240]; median CEA DT was 31.8 [4.9-180]. 18F-DOPA PET/CT was positive in 33 patients (91.6%); in 18 (56%) uptake was observed in lymph nodes in the neck or mediastinum, in 7 cases (22%) distant metastases were diagnosed, and in 8 additional patients (24%) both locoregional and distant sites of disease were found. Ctn and CEA levels were higher in patients with ≥ 3 foci of distant metastases. In 14 patients (38.8%), findings on 18F-DOPA PET/CT led to changes in management; surgery for locoregional lymph nodes was the most frequent procedure in 8 patients (22%). Conclusion 18F-DOPA PET/CT was useful for the detection of recurrent disease in MTC and provided helpful information for patient management.


Sign in / Sign up

Export Citation Format

Share Document