Improving root-knot nematode management on two soybean genotypes through the application of Bradyrhizobium japonicum, Trichoderma pseudokoningii and Glomus mosseae in full factorial combinations

2007 ◽  
Vol 26 (7) ◽  
pp. 1006-1012 ◽  
Author(s):  
E.O. Oyekanmi ◽  
D.L. Coyne ◽  
O.E. Fagade ◽  
O. Osonubi
2001 ◽  
Vol 26 (1) ◽  
pp. 93-94 ◽  
Author(s):  
ELVIRA M.R. PEDROSA ◽  
ROMERO M. MOURA

Even though resistance is the most promising tactic for root-knot nematode management on soybean (Glycine max), virulent biotypes may occur and be selected on specific resistant plant genotypes. In the present study, reproduction rate of Meloidogyne arenaria race 1 increased after four sequences of continuous culture of the parasite on resistant soybean genotypes.


2011 ◽  
Vol 48 (No. 8) ◽  
pp. 356-360
Author(s):  
V. Milić ◽  
N. Mrkovački ◽  
M. Popović ◽  
Đ. Malenčić

The objective of the study was to investigate how the inoculation of soybean seed (variety Afrodita, and lines NS-L-2016 and NS-L-300168) with strains of Bradyrhizobium japonicum (1, 1a, 2b), Azotobacter chroococcum (3, 13, 14), and GA3 (gibberellic acid) affected plant dry weight, nitrogen content of nodules and whole plant, the enzymes of nitrogen assimilation (NR, GS) and soluble protein content. The highest dry matter mass and nitrogen content were found in the variety Afrodita, followed by line NS-L-300168. The GS and NR activity was increased significantly by all three inoculation treatments relative to the control. In all three genotypes, the highest values for the enzymatic activity were achieved with treatment mixture of B. japonicum and A. chroococcum strains. Each measurement was performed with three replications. The results were processed using variance analysis and the values were tested with the LSD at 5%.


1999 ◽  
Vol 15 (2-3) ◽  
pp. 69-76 ◽  
Author(s):  
Brent S. Sipes ◽  
Alton S. Arakaki ◽  
Donald P. Schmitt ◽  
Randall T. Hamasaki

2010 ◽  
Vol 50 (3) ◽  
pp. 321-325 ◽  
Author(s):  
Ishola Odeyemi ◽  
Steve Afolami ◽  
Olufemi Sosanya

Effect of Glomus Mosseae (Arbuscular Mycorrhizal Fungus) On Host - Parasite Relationship of Meloidogyne Incognita (Southern Root-Knot Nematode) on Four Improved Cowpea VarietiesTwo pot experiments and a field study were conducted in a Randomized Complete Block Design (RCBD). The experiments were conducted to determine the effect ofGlomus mosseae, a mycorrhiza fungus, on the reaction of four improved cowpea varieties toMeloidogyne incognita.Cowpea plants were inoculated with a single or a combination of 5 000 eggs ofM. incognitaand 50 g ofG. mosseaeinoculum containing 5 spores/g of soil. The standardized method of screening and reporting resistance of crop germplasm to root-knot nematodes at 60 days after planting, and the modified version of including yield for resistance rating at harvest were used for this study. Root galling due toM. incognitainfection was significantly lower on all the cowpea varieties treated withG. mosseaeand more significantly on IT90K-277-2 and IT89KD-288 in the screenhouse.G. mosseae, suppressed root-knot nematode reproduction on all the varieties compared to cowpea plants infected only byM. incognitaboth in the screenhouse and field experiments. Also,G. mosseaemitigated the damage attributable to the root-knot nematode on all these varieties. Using Gall Index (GI), reproduction factor and yield,G. mosseaewas effective in improving the resistance of the cowpea varieties toM. incognita.IT90K-76 cowpea variety was consistently resistant to the root-knot nematode, while IT90K-277-2 was tolerant withM. incognitainfection but resistant withG. mosseaetreatment. IT90K-941-1 variety was resistant in the screenhouse. The results of this study also confirmedG. mosseaeas a potential bio-control agent forM. incognitaon these cowpea varieties.


2015 ◽  
Vol 26 (2) ◽  
pp. 174-180 ◽  
Author(s):  
Dong-Dong Niu ◽  
Ying Zheng ◽  
Li Zheng ◽  
Chun-Hao Jiang ◽  
Dong-Mei Zhou ◽  
...  

HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 391A-391
Author(s):  
J. Farías-Larios ◽  
J.G. López-Aguirre ◽  
J.L. Miranda ◽  
L.A. Bayardo-Vizcaino

Acerola (Malpighia glabra L.) is a small, red fruit that is native to the West Indies, but is also grown in South and Central America. In western Mexico, this crop is very important because acerola is the richest known natural source of vitamin C, with a content of 1000 to 4500 mg/100 g of fruit. In nursery and field conditions, acerola growth is severely affected by root-knot nematode. The objective of this study was to evaluate the use of commercial formulations of Bacillus spp. on root-knot nematode management. This study was carried out in the Farm Santa Clara Maria in Colima State. Acerola plants, 60 days old were used. They were grown in 3-L pots with soil, compost, and pumice stone mixture as substrate. Treatments evaluated were: 5, 10, 15 and 30 mL/pot of Activate 2001, Tri-Mat (5 mL/pot) and control, without application. Activate 2001® is a concentrated liquid in water suspension of Bacillus chitinosporus, B. laterosporus, and B. licheniformis. Initial nematode population was of 3,305 in 50 g of roots. Acerola plants were harvested at 30, 60, and 90 days after application. Results show that Activate 2001 at 10 and 30 mL rates reduce significantly root-knot populations in acerola plants 60 days after application with 135 and 178 nematodes/50 g of roots, respectively. Diameter stem, shoot fresh and dry weight and root production were also increased by rhizobacteria application. These results are promising and confirmed the potential of Bacillus as a biological agent for nematode management.


Sign in / Sign up

Export Citation Format

Share Document