scholarly journals Nodule efficiency of three soybean genotypes inoculated by different methods

2011 ◽  
Vol 48 (No. 8) ◽  
pp. 356-360
Author(s):  
V. Milić ◽  
N. Mrkovački ◽  
M. Popović ◽  
Đ. Malenčić

The objective of the study was to investigate how the inoculation of soybean seed (variety Afrodita, and lines NS-L-2016 and NS-L-300168) with strains of Bradyrhizobium japonicum (1, 1a, 2b), Azotobacter chroococcum (3, 13, 14), and GA3 (gibberellic acid) affected plant dry weight, nitrogen content of nodules and whole plant, the enzymes of nitrogen assimilation (NR, GS) and soluble protein content. The highest dry matter mass and nitrogen content were found in the variety Afrodita, followed by line NS-L-300168. The GS and NR activity was increased significantly by all three inoculation treatments relative to the control. In all three genotypes, the highest values for the enzymatic activity were achieved with treatment mixture of B. japonicum and A. chroococcum strains. Each measurement was performed with three replications. The results were processed using variance analysis and the values were tested with the LSD at 5%.

1939 ◽  
Vol 29 (3) ◽  
pp. 321-346 ◽  
Author(s):  
D. J. Watson ◽  
A. G. Norman

Experiments were made in 1936 and 1937 on barley plants grown in pot culture, to determine the effect of shading the ear or the shoot after ear emergence on dry weight and nitrogen content.It was found that after ear emergence the ear and the shoot (leaves and stem) make approximately equal contributions to the assimilation of the whole plant. In the 1936 experiment 28% of the final dry weight of the ear was accounted for by assimilation in the ear itself, and in the 1937 experiment, 19%. These are minimum estimates, for assimilation must have been proceeding in the ears during emergence, before the shading treatments were applied. The results agree well with similar estimates of the extent of assimilation in the ear made on wheat by other workers.The effects of shading on the amount of nitrogen present in the plant at harvest were somewhat variable, but they were always small compared with the effects on dry weight. Shading tended to reduce the amount of nitrogen in the ear, but as the dry weight of the ear was reduced to a much greater extent, - nitrogen as percentage of dry matter in the ear was increased. It is concluded from this result that translocation of nitrogen compounds to the ear is not closely dependent on the amount of the concurrent increase in dry weight of the ear. It appears that the approximate constancy of nitrogen percentage in the ear and the grain throughout development is a consequence of the particular conditions prevailing during normal growth in the field.The experiments showed that 20–30 % of the dry weight of the whole plant was added after ear emergence, suggesting that climatic conditions during this late stage of growth is of considerable importance in determining the final yield.The authors wish to thank Miss J. Hellyer for carrying out many of the determinations of nitrogen content, and Mr S. A. W. French for assistance with the statistical computation.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 574
Author(s):  
Yun-Yin Feng ◽  
Jin He ◽  
Yi Jin ◽  
Feng-Min Li

Both water stress and P deficit limit soybean seed yield, but the effects of water regimes and P application rates, their interaction on P status, acquisition, and partitioning, and their roles in yield performance have not been well-studied. Two soybean genotypes (Huangsedadou (HD) and Zhonghuang 30 (ZH)) with contrasting seed yield and root dry weight (DW) were used to investigate the P status, P acquisition, P partitioning, and yield formation under two water regimes (well-watered (WW) and cyclic water stress (WS)) and three P rates (0 (P0), 60 (P60), and 120 (P120) mg P kg−1 dry soil). The results show that increased P and water supply increased the seed yield, shoot and root DW and P concentrations and accumulations in different organs. Cultivar ZH had a significantly higher seed yield than HD at P60 and P120 under WS and at P0 under WW, but a lower seed yield at P60 and P120 under WW. Cultivar ZH had a significantly higher P harvest index and P acquisition efficiency, but a significantly lower shoot and root DW than HD. The interaction between water treatments and P rates had significant effects on leaf and stem P concentration. Cultivar ZH had significantly lower P partitioning to leaves and stems but significantly higher P partitioning to seeds than HD. The seed yield was positively correlated with leaf and seed P accumulations and P acquisition efficiency under WS. We conclude that (1) adequate water supply improved the P mobilization from leaves and stems at maturity, which may have improved the seed yield; and (2) the high P acquisition efficiency is coordination to high P partition to seeds to produce a high seed yield under water- and P-limited conditions.


Author(s):  
MK Uddin ◽  
MK Hasan ◽  
AKMA Alam

A field experiment was conducted in the Field Laboratory of the Department of Crop Botany, BAU, Mymensingh during November 2003 to May 2004 to assess the effect of planting time (November and December) on some morphological structure, and root & shoot biomass production in four soybean genotypes (GPB-1, GPB-2, AGS-332 and AGS-11-35). The plant height, stem base diameter, seed dry weight plant-1 were significantly greater in the late planting crops (December) but number of branches plant-1, number of leaves plant-1, leaves dry weight plant-1, shoots dry weight plant-1, roots dry weight plant-1, total dry matter plant-1 were also significantly greater in November planting. Highest plant height, branches plant-1 and leaves plant-1, shoot dry weight plant-1 and total dry matter were found in GPB-2 genotype. Key words: Early and late planting, shoot and root mass, Glycine max. DOI = 10.3329/jard.v5i1.1453 J Agric Rural Dev 5(1&2), 25-29, June 2007


1975 ◽  
Vol 55 (4) ◽  
pp. 975-986 ◽  
Author(s):  
L. J. FISHER ◽  
D. B. FOWLER

Dry matter yield, percent dry weight, in vitro digestible dry matter, in vitro digestible organic matter, neutral detergent fiber, acid detergent fiber, ash and hemicellulose contents were determined for spring- and fall-sown common wheat, barley, rye and triticale and spring-sown durum wheat and oats for the period from late boot to maturity. Differences among cultivars and stages of maturity were significant for all parameters. These differences were accompanied by stage of maturity interactions. Consideration of the interrelationships among these parameters revealed that level of in vitro digestible dry matter was reflected in measures of acid detergent fiber and ash or percent dry weight. Further analyses indicated that differences in digestibility due to stage of maturity were primarily reflected by changes in ash or percent dry weight, while differences in digestibility among cultivars were mainly attributable to differences in acid detergent fiber.


1976 ◽  
Vol 16 (80) ◽  
pp. 387 ◽  
Author(s):  
P Farrington

Reproductive development, and the distribution of dry matter and nitrogen were followed in field plantings of Lupinus angustifolius cv. Uniharvest and L. cosentinii selection CB12 from the start of flowering until maturity. L. cosentinii (CBI 2) commenced flowering one week earlier, but developed one less order of inflorescences and fewer flowers than L. angustfiolius (Uniharvest) ; yet it set more pods and produced more seed. In both species seeds did not commence to fill until the leaves began to fall shortly after flowering ended. Seeds in pods on all orders of inflorescence filled concurrently. The increase in seed weight coincided with a rapid fall in the nitrogen content of other fractions of the tops.


1989 ◽  
Vol 16 (3) ◽  
pp. 265 ◽  
Author(s):  
TL Setter ◽  
H Greenway ◽  
T Kupkanchanakul

Submergence of rice in water at low CO2 concentrations was studied in phytotron experiments using plants in the 3rd to 4th leaf stage. Cultivars known to differ in tolerance to complete submergence were adversely affected by the same mechanisms but to a different degree. Submergence for 4-12 days either reduced dry weight production of the whole plant by 6 to 10 fold or even resulted in a loss of dry weight. Nevertheless, the emerging leaf elongated, and both ethanol insoluble material and protein content increased with time. These increases were associated with translocation of dry matter and nitrogen from expanded to expanding leaves. Submergence also reduced concentrations of soluble sugars and starch in all plant parts by 4 to 12 fold. In contrast, concentrations of potassium and free amino acids in shoots were either the same or, in the case of the emerging leaf, higher than in plants which were not submerged. These results indicate (i) these solutes were not limiting growth and (ii) the tissues retained their semipermeability to these solutes during submergence. Insufficient capacity of root metabolism in submerged plants was indicated by low rates of respiration, which persisted in the presence of glucose, and by a low ability to consume ethanol. A model is presented on the adverse effects of submergence of rice which considers possible interactions between CO2, low O2 and high ethylene concentrations.


2015 ◽  
Vol 37 ◽  
pp. 61-70 ◽  
Author(s):  
F.D. Ugese ◽  
P.T. Ezechukwu ◽  
C. Ogbaje

Experiments to determine the effect of seed size, watering interval and defoliation on growth and dry matter attributes of seedlings of shea butter tree were conducted at Makurdi, Nigeria, from July 2010 to April, 2012. In the first experiment, treatments were made up of three seed size categories described as small (5-10g), medium (11-15g) and large (16-20g) and three watering intervals of 3, 6 and 9 days. In the second experiment, treatments comprised three watering intervals of 3, 6 and 9 days and three levels of defoliation – 0, 50 and 100%. In both experiments, factorial combinations of the treatments were laid out in completely randomized design (CRD) and replicated three times. Results of analysis of variance showed that in the first experiment seed size significantly influenced root length with the medium and large seeds producing seedlings with comparatively longer roots than the small seeds. The most frequently watered seedlings (3 and 6 days) produced more leaves than those watered less frequently (9 days). Seed size influenced dry weight of root and total (whole plant) dry weight with the medium and large seeds recording significantly higher values than the small seeds. Watering interval however did not significantly influence any of the other traits. Seed weight exerted significant influence on amount of dry matter partitioned to the stem and the root. More dry matter was partitioned to the stem by the small seeds. Conversely, medium and large seeds allocated more dry matter to the root than to the stem. In the second experiment, defoliation level only influenced total fresh weight, dry weight of root and total dry weight in favour of plants with half their leaves removed. None of the traits examined were significantly influenced by watering regime. Interaction between defoliation level and watering regime significantly influenced total fresh weight, dry weight of root and total dry weight. Generally seed size had more influence on seedling characters than watering interval. Seedlings also demonstrated remarkable ability to overcome effects of defoliation.


HortScience ◽  
2004 ◽  
Vol 39 (1) ◽  
pp. 65-70 ◽  
Author(s):  
Justine E. Vanden Heuvel ◽  
John T.A. Proctor ◽  
K. Helen Fisher ◽  
J. Alan Sullivan

In order to gain an understanding of the capacity of severely shaded leaves to be productive in dense canopies, the effects of increased shading on morphology, dry-matter partitioning, and whole-plant net carbon exchange rate (NCER) were investigated on greenhouse-grown Vitis vinifera L. `Chardonnay' grapevines. Vines were subjected to whole-plant shading levels of 0%, 54%, 90%, and 99% of direct sun 3 weeks after potting. Data were collected 8 to 10 weeks after potting. Nonlinear regression was used to investigate the relationship of leaf morphological traits and organ dry weights to increased shading. Leaf size was maintained with increased shading to approximately the 90% shading level, while leaf fresh weight, volume, density, and thickness were immediately reduced with increased shading. Root dry weight was most affected by increased shading, and root to shoot ratio was reduced. When nonlinear regressions were produced for light response curves, light compensation point was reduced by approximately 49% by moderate shading, and 61% by severe shading. Shaded leaves approached the asymptote of the light response curve more quickly, and had reduced dark respiration rates, indicating that the morphological compensation responses by the vine allow shaded leaves to use available light more efficiently. However, the long-term ramifications of reduced root growth in the current year on vines with shaded leaves may be significant.


1966 ◽  
Vol 6 (21) ◽  
pp. 150 ◽  
Author(s):  
NH Shaw ◽  
CT Gates ◽  
JR Wilson

In a field experiment on a solodic soil, applications of superphosphate, in the presence of molybdenum, increased the dry matter yield of S. humilis H.B.K. from 2,450 to 5,800 lb an acre, and increased the relative nitrogen content from 2.36 to 3.28 per cent. When this result was examined under more closely controlled conditions in a pot experiment, using the constituent elements of molybdenized superphosphate, it was found that the combination of phosphorus and sulphur produced the greatest dry weight and nitrogen responses. Nevertheless, substantial increases in dry weight of plant tops were obtained with added phosphorus in the absence of sulphur, although the relative nitrogen content of this dry matter was low unless sulphur was also present. There was a small response to molybdenum in this experiment, but calcium played only a minor role. In the pot experiment three replicates were placed in a glasshouse, and one under a light bank in a growth room. Plants grew faster and gave higher dry matter and nitrogen yields under the light bank than in the glasshouse. Attention is drawn to the adaptability that S. humilis displays to a wide range of nutritional conditions, and it is suggested that both the yield and nitrogen content of this legume are probably being limited by nutrient deficiency in most areas of northern Australia where it is being grown.


Author(s):  
Dragana Miljakovic ◽  
Jelena Marinković ◽  
Maja Ignjatov ◽  
Dragana Milosević ◽  
Zorica Nikolić ◽  
...  

The competitiveness of Bradyrhizobium japonicum inoculation strain against indigenous rhizobia was examined in a soil pot experiment. The effect of inoculation strain was evaluated under different soil conditions: with or without previously grown soybean and applied commercial inoculant. Molecular identification of inoculation strain and investigated rhizobial isolates, obtained from nodules representing inoculated treatments, was performed based on 16S rDNA and enterobacterial repetitive intergenic consensus (ERIC) sequencing. Inoculation strain showed a significant effect on the investigated parameters in both soils. Higher nodule occupancy (45% vs. 18%), nodule number (111% vs. 5%), nodule dry weight (49% vs. 9%), shoot length (15% vs. 7%), root length (31% vs. 13%), shoot dry weight (34% vs. 11%), shoot nitrogen content (27% vs. 2%), and nodule nitrogen content (9% vs. 5%) was detected in soil without previously grown soybean and applied commercial inoculant. Soil had a significant effect on the shoot, root and nodule nitrogen content, while interaction of experimental factors significantly altered dry weight and nitrogen content of shoots, roots and nodules, as well as number of nodules. Nodulation parameters were significantly related with shoot dry weight, shoot and nodule nitrogen content. Symbiotic performance of inoculation strains in the field could be improved through co-selection for their competitiveness and effectiveness.  


Sign in / Sign up

Export Citation Format

Share Document