scholarly journals In silico antibody engineering for SARS-CoV-2 detection

Author(s):  
Didac Martí ◽  
Eduard Martín-Martínez ◽  
Juan Torras ◽  
Oscar Bertran ◽  
Pau Turon ◽  
...  
2021 ◽  
Author(s):  
Samvedna Saini ◽  
Manusmriti Agarwal ◽  
Amartya Pradhan ◽  
Savitha Pareek ◽  
Ashish K Singh ◽  
...  

Abstract Introduction: Computational antibody engineering, affinity maturation, and screening greatly aid in vaccine and therapeutic antibody development by increasing the speed and accuracy of predictions. This study presents a protocol for designing affinity enhancing mutants of antibodies through in silico mutagenesis. A SARS-CoV-2 cross-reactive neutralizing antibody, CR3022, is considered as a case study.Methods: Our study aimed at generating antibody candidates from the human antibody CR3022 (derived from convalescent SARS patient) against the RBD of SARS-CoV-2 via in silico affinity maturation using site-directed mutagenesis in mutation hotspots. We optimized the paratope of the CR3022 antibody towards the RBD of SARS-CoV-2 for better binding affinity and stability, employing molecular modeling, docking, dynamics simulations, and molecular mechanics energies combined with generalized Born and surface area (MM-GBSA). Results: Nine antibody candidates were generated post in silico site-directed mutagenesis followed by preliminary screening. Molecular dynamics simulation of 100 nanoseconds and MM-GBSA analysis confirmed L-K45S as a lead antibody with the highest binding affinity against the RBD compared to wild-type and mutant counterparts. Three out of the remaining mutants were also found to have distinct epitopes and binding, possessing a potential to be developed against emerging SARS-CoV-2 variants of concern. Conclusion: The study demonstrates the use of an integrative antibody engineering protocol for enhancing affinity and neutralization potential through mutagenesis using robust open-source computational tools and predictors. This study highlights unique scoring and ranking methods for evaluating docking efficiency. It also underscores the importance of framework mutations for developing broadly neutralizing antibodies.


2021 ◽  
Author(s):  
Saleh Riahi ◽  
Jae Hyeon Lee ◽  
Shuai Wei ◽  
Robert Cost ◽  
Alessandro Masiero ◽  
...  

Abstract As the COVID-19 pandemic continues to spread, hundreds of new initiatives including studies on existing medicines are running to fight the disease. To deliver a potentially immediate and lasting treatment to current and emerging SARS-CoV-2 variants, new collaborations and ways of sharing are required to create as many paths forward as possible. Here we leverage our expertise in computational antibody engineering to rationally design/engineer three previously reported SARS-CoV neutralizing antibodies and share our proposal towards anti-SARS-CoV-2 biologics therapeutics. SARS-CoV neutralizing antibodies, m396, 80R, and CR-3022 were chosen as templates due to their diversified epitopes and confirmed neutralization potency against SARS-CoV (but not SARS-CoV-2 except for CR3022). Structures of variable fragment (Fv) in complex with receptor binding domain (RBD) from SARS-CoV or SARS-CoV-2 were subjected to our established in silico antibody engineering platform to improve their binding affinity to SARS-CoV-2 and developability profiles. The selected top mutations were ensembled into a focused library for each antibody for further screening. In addition, we convert the selected binders with different epitopes into the trispecific format, aiming to increase potency and to prevent mutational escape. Lastly, to avoid antibody induced virus activation or enhancement, we suggest application of NNAS and DQ mutations to the Fc region to eliminate effector functions and extend half-life.


2021 ◽  
Author(s):  
Saleh Riahi ◽  
Jae Hyeon Lee ◽  
Shuai Wei ◽  
Robert Cost ◽  
Alessandro Masiero ◽  
...  

As the COVID-19 pandemic continues to spread, hundreds of new initiatives including studies on existing medicines are running to fight the disease. To deliver a potentially immediate and lasting treatment to current and emerging SARS-CoV-2 variants, new collaborations and ways of sharing are required to create as many paths forward as possible. Here we leverage our expertise in computational antibody engineering to rationally design/optimize three previously reported SARS-CoV neutralizing antibodies and share our proposal towards anti-SARS-CoV-2 biologics therapeutics. SARS-CoV neutralizing antibodies, m396, 80R, and CR-3022 were chosen as templates due to their diversified epitopes and confirmed neutralization potency against SARS. Structures of variable fragment (Fv) in complex with receptor binding domain (RBD) from SARS-CoV or SARS-CoV2 were subjected to our established in silico antibody engineering platform to improve their binding affinity to SARS-CoV2 and developability profiles. The selected top mutations were ensembled into a focused library for each antibody for further screening. In addition, we convert the selected binders with different epitopes into the trispecific format, aiming to increase potency and to prevent mutational escape. Lastly, to avoid antibody induced virus activation or enhancement, we applied NNAS and DQ mutations to the Fc region to eliminate effector functions and extend half-life.


2020 ◽  
Author(s):  
Tania M. Manieri ◽  
Carolina G. Magalhaes ◽  
Daniela Y. Takata ◽  
João V. Batalha-Carvalho ◽  
Ana M. Moro

In the past few years, improvement in computational approaches provided faster and less expensive outcomes on the identification, development, and optimization of monoclonal antibodies (mAbs). In silico methods, such as homology modeling, to predict antibody structures, identification of epitope-paratope interactions, and molecular docking are useful to generate 3D structures of the antibody–antigen complexes. It helps identify the key residues involved in the antigen–antibody complex and enable modifications to enhance the antibody binding affinity. Recent advances in computational tools for redesigning antibodies are significant resources to improve antibody biophysical properties, such as binding affinity, solubility, stability, decreasing the timeframe and costs during antibody engineering. The immunobiological market grows continuously with new molecules, both natural and new molecular formats, such as bispecific antibodies, Fc-antibody fusion proteins, and mAb fragments, requiring novel methods for designing, screening, and analyzing. Algorithms and software set the in silico techniques on the innovation frontier.


2020 ◽  
Vol 47 (6) ◽  
pp. 398-408
Author(s):  
Sonam Tulsyan ◽  
Showket Hussain ◽  
Balraj Mittal ◽  
Sundeep Singh Saluja ◽  
Pranay Tanwar ◽  
...  

Author(s):  
Nils Lachmann ◽  
Diana Stauch ◽  
Axel Pruß

ZusammenfassungDie Typisierung der humanen Leukozytenantigene (HLA) vor Organ- und hämatopoetischer Stammzelltransplantation zur Beurteilung der Kompatibilität von Spender und Empfänger wird heutzutage in der Regel molekulargenetisch mittels Amplifikation, Hybridisierung oder Sequenzierung durchgeführt. Durch die exponentiell steigende Anzahl an neu entdeckten HLA-Allelen treten vermehrt Mehrdeutigkeiten, sogenannte Ambiguitäten, in der HLA-Typisierung auf, die aufgelöst werden müssen, um zu einem eindeutigen Ergebnis zu gelangen. Mithilfe kategorisierter Allelfrequenzen (häufig, gut dokumentiert und selten) in Form von CWD-Allellisten (CWD: common and well-documented) ist die In-silico-Auflösung von Ambiguitäten durch den Ausschluss seltener Allele als mögliches Ergebnis realisierbar. Ausgehend von einer amerikanischen CWD-Liste existieren derzeit auch eine europäische, deutsche und chinesische CWD-Liste, die jeweils regionale Unterschiede in den Allelfrequenzen erkennbar werden lassen. Durch die Anwendung von CWD-Allelfiltern in der klinischen HLA-Typisierung können Zeit, Kosten und Arbeitskraft eingespart werden.


Sign in / Sign up

Export Citation Format

Share Document