scholarly journals Application of an integrated computational antibody engineering platform to design SARS-CoV-2 neutralizers

2021 ◽  
Author(s):  
Saleh Riahi ◽  
Jae Hyeon Lee ◽  
Shuai Wei ◽  
Robert Cost ◽  
Alessandro Masiero ◽  
...  

Abstract As the COVID-19 pandemic continues to spread, hundreds of new initiatives including studies on existing medicines are running to fight the disease. To deliver a potentially immediate and lasting treatment to current and emerging SARS-CoV-2 variants, new collaborations and ways of sharing are required to create as many paths forward as possible. Here we leverage our expertise in computational antibody engineering to rationally design/engineer three previously reported SARS-CoV neutralizing antibodies and share our proposal towards anti-SARS-CoV-2 biologics therapeutics. SARS-CoV neutralizing antibodies, m396, 80R, and CR-3022 were chosen as templates due to their diversified epitopes and confirmed neutralization potency against SARS-CoV (but not SARS-CoV-2 except for CR3022). Structures of variable fragment (Fv) in complex with receptor binding domain (RBD) from SARS-CoV or SARS-CoV-2 were subjected to our established in silico antibody engineering platform to improve their binding affinity to SARS-CoV-2 and developability profiles. The selected top mutations were ensembled into a focused library for each antibody for further screening. In addition, we convert the selected binders with different epitopes into the trispecific format, aiming to increase potency and to prevent mutational escape. Lastly, to avoid antibody induced virus activation or enhancement, we suggest application of NNAS and DQ mutations to the Fc region to eliminate effector functions and extend half-life.

2021 ◽  
Author(s):  
Saleh Riahi ◽  
Jae Hyeon Lee ◽  
Shuai Wei ◽  
Robert Cost ◽  
Alessandro Masiero ◽  
...  

As the COVID-19 pandemic continues to spread, hundreds of new initiatives including studies on existing medicines are running to fight the disease. To deliver a potentially immediate and lasting treatment to current and emerging SARS-CoV-2 variants, new collaborations and ways of sharing are required to create as many paths forward as possible. Here we leverage our expertise in computational antibody engineering to rationally design/optimize three previously reported SARS-CoV neutralizing antibodies and share our proposal towards anti-SARS-CoV-2 biologics therapeutics. SARS-CoV neutralizing antibodies, m396, 80R, and CR-3022 were chosen as templates due to their diversified epitopes and confirmed neutralization potency against SARS. Structures of variable fragment (Fv) in complex with receptor binding domain (RBD) from SARS-CoV or SARS-CoV2 were subjected to our established in silico antibody engineering platform to improve their binding affinity to SARS-CoV2 and developability profiles. The selected top mutations were ensembled into a focused library for each antibody for further screening. In addition, we convert the selected binders with different epitopes into the trispecific format, aiming to increase potency and to prevent mutational escape. Lastly, to avoid antibody induced virus activation or enhancement, we applied NNAS and DQ mutations to the Fc region to eliminate effector functions and extend half-life.


2020 ◽  
Author(s):  
Harshawardhan Pande

The COVID-19 pandemic caused by the SARS-CoV-2 virus is posing a major global challenge due to its rapid infectivity and lethality. Despite a global effort towards creating a vaccine, no viable vaccine currently exists. While multiple bioinformatic studies have attempted to predict epitopes, they have focused on the whole spike protein without considering antibody mediated enhancement or Th-2 immunopathology and have missed some important but less antigenic epitopes in the receptor binding domain. Therefore, this study used in silico methods to design and evaluate a potential multiepitope vaccine that specifically targets the receptor binding domain due to its critical function in viral entry. Immunoinformatic tools were used to specifically examine the receptor binding domain of the surface glycoprotein for suitable T cell and B cell epitopes. The selected 5 B cell and 8 T cell epitopes were then constructed into a subunit vaccine and appropriate adjuvants along with the universal immunogenic PADRE sequence were added to boost efficacy. The structure of the vaccine construct was predicted through a de novo approach and molecular docking simulations were performed which demonstrated high affinity binding to TLR 5 receptor and appropriate HLA proteins. Finally, the vaccine candidate was cloned into an expression vector for use as a recombinant vaccine. Similarities to some recent epitope mapping studies suggest a high potential for eliciting neutralizing antibodies and generating a favorable overall immune response.


2020 ◽  
Author(s):  
Fateme Sefid ◽  
Zahra Payandeh ◽  
Ghasem Azamirad ◽  
Behzad Mansoori ◽  
Behzad Baradaran ◽  
...  

Abstract Background: The nCoV-2019 is a cause of COVID-19 disease. The surface spike glycoprotein (S), which is necessary for virus entry through the intervention of the host receptor and it mediates virus-host membrane fusion, is the primary coronavirus antigen (Ag). The angiotensin-converting enzyme 2 (ACE2) is reported to be the effective human receptor for SARS-CoVs 2. ACE2 receptor can be prevented by neutralizing antibodies (nAbs) such as CR3022 targeting the virus receptor-binding site. Considering the importance of computational docking, and affinity maturation we aimed to find the important amino acids of the CR3022 antibody (Ab). These amino acids were then replaced by other amino acids to improve Ab-binding affinity to a receptor-binding domain (RBD) of the 2019-nCoV spike protein. Finally, we measured the binding affinity of Ab variants to the Ag. Result: Our findings disclosed that several variant mutations could successfully improve the characteristics of the Ab binding compared to the normal antibodies. Conclusion: The modified antibodies may be possible candidates for stronger affinity binding to Ags which in turn can affect the specificity and sensitivity of antibodies.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0253574
Author(s):  
Kaewta Rattanapisit ◽  
Christine Joy I. Bulaon ◽  
Narach Khorattanakulchai ◽  
Balamurugan Shanmugaraj ◽  
Kittikhun Wangkanont ◽  
...  

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for the ongoing coronavirus disease (COVID-19) pandemic which is characterized by respiratory illness and severe pneumonia, and currently accounts for > 2.5 million deaths worldwide. Recently, diverse mutations in the spike protein of SARS-CoV-2 were reported in United Kingdom (Alpha) and South Africa (Beta) strains which raise concerns over the potential increase in binding affinity towards the host cell receptor and diminished host neutralization capabilities. In order to study the effect of mutation in the binding efficiency of SARS-CoV-2 receptor binding domain (RBD) with anti-SARS-CoV/CoV-2 monoclonal antibodies (mAbs), we have produced SARS-CoV-2 RBD and two variants SARS-CoV-2 RBD (Alpha RBD and Beta RBD) in Nicotiana benthamiana by transient expression. Plant-produced SARS-CoV-2 RBD-Fc, Alpha RBD-Fc and Beta RBD-Fc exhibited specific binding to human angiotensin converting enzyme 2 (ACE2) receptor determined by ELISA. Intriguingly, the binding of plant-produced SARS-CoV-2 RBD proteins to plant-produced mAbs CR3022, B38, and H4 was found to be different depending on the variant mutation. In contrary to the plant-produced SARS-CoV-2 RBD-Fc and Alpha RBD-Fc, Beta RBD-Fc variant showed weak binding affinity towards the mAbs. The result suggested that the Beta RBD variant might have acquired partial resistance to neutralizing antibodies compared to other variants. However, further studies with sera from convalescent or vaccinated individuals are required to confirm this finding.


2021 ◽  
Vol 14 (12) ◽  
pp. 1328
Author(s):  
Miroslava Nedyalkova ◽  
Mahdi Vasighi ◽  
Subrahmanyam Sappati ◽  
Anmol Kumar ◽  
Sergio Madurga ◽  
...  

The lack of medication to treat COVID-19 is still an obstacle that needs to be addressed by all possible scientific approaches. It is essential to design newer drugs with varied approaches. A receptor-binding domain (RBD) is a key part of SARS-CoV-2 virus, located on its surface, that allows it to dock to ACE2 receptors present on human cells, which is followed by admission of virus into cells, and thus infection is triggered. Specific receptor-binding domains on the spike protein play a pivotal role in binding to the receptor. In this regard, the in silico method plays an important role, as it is more rapid and cost effective than the trial and error methods using experimental studies. A combination of virtual screening, molecular docking, molecular simulations and machine learning techniques are applied on a library of natural compounds to identify ligands that show significant binding affinity at the hydrophobic pocket of the RBD. A list of ligands with high binding affinity was obtained using molecular docking and molecular dynamics (MD) simulations for protein–ligand complexes. Machine learning (ML) classification schemes have been applied to obtain features of ligands and important descriptors, which help in identification of better binding ligands. A plethora of descriptors were used for training the self-organizing map algorithm. The model brings out descriptors important for protein–ligand interactions.


2020 ◽  
Author(s):  
Amartya Pradhan ◽  
Samvedna Saini ◽  
Manusmriti Agarwal ◽  
Yatender Kumar

Abstract Background: The coronavirus disease 2019 (COVID-19) has unequivocally affected the lives of people across the planet and has imposed an unprecedented burden on our healthcare systems. With no potent regimen for treatment, there is a dire need for finding promising candidates. Receptor binding domain (RBD) of the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, has proven to be a promising target owing to its role in viral invasion. Methods: Our study aimed at generating antibody candidates from the human antibody CR3022 (derived from convalescent SARS patient) against the RBD of SARS-CoV-2 via in silico affinity maturation. We optimized the paratope of the CR3022 antibody towards the RBD of SARS-CoV-2 for better binding affinity and stability, employing molecular modeling, docking, and dynamics simulations. Results: Out of seven antibody leads generated post in silico site-directed mutagenesis followed by preliminary screening, antibody named SAM3 was predicted to have the highest binding affinity towards RBD. However, molecular dynamics simulation of fifty nanoseconds set the seal on SAM1 and SAM2. Both demonstrated a higher binding affinity and stability compared to other counterparts and CR3022. Conclusion: We hypothesize that SAM1, SAM2, and SAM3 antibody candidates can bind to the RBD and potentially disrupt the viral invasion. All three antibody candidates to bind residues on the human ACE-2 binding site of SARS-CoV-2 which were not conserved from SARS-CoV. Our study calls for further in vitro and in vivo testing of SAM1, SAM2, and SAM3 candidates for COVID-19 treatment.


2021 ◽  
pp. eabd6990
Author(s):  
Sang Il Kim ◽  
Jinsung Noh ◽  
Sujeong Kim ◽  
Younggeun Choi ◽  
Duck Kyun Yoo ◽  
...  

Stereotypic antibody clonotypes exist in healthy individuals and may provide protective immunity against viral infections by neutralization. We observed that 13 out of 17 patients with COVID-19 had stereotypic variable heavy chain (VH) antibody clonotypes directed against the receptor-binding domain (RBD) of SARS-CoV-2 spike protein. These antibody clonotypes were comprised of immunoglobulin heavy variable (IGHV)3-53 or IGHV3-66 and immunoglobulin heavy joining (IGHJ)6 genes. These clonotypes included IgM, IgG3, IgG1, IgA1, IgG2, and IgA2 subtypes and had minimal somatic mutations, which suggested swift class switching after SARS-CoV-2 infection. The different immunoglobulin heavy variable chains were paired with diverse light chains resulting in binding to the RBD of SARS-CoV-2 spike protein. Human antibodies specific for the RBD can neutralize SARS-CoV-2 by inhibiting entry into host cells. We observed that one of these stereotypic neutralizing antibodies could inhibit viral replication in vitro using a clinical isolate of SARS-CoV-2. We also found that these VH clonotypes existed in six out of 10 healthy individuals, with IgM isotypes predominating. These findings suggest that stereotypic clonotypes can develop de novo from naïve B cells and not from memory B cells established from prior exposure to similar viruses. The expeditious and stereotypic expansion of these clonotypes may have occurred in patients infected with SARS-CoV-2 because they were already present.


Science ◽  
2021 ◽  
pp. eabg9175 ◽  
Author(s):  
Leonidas Stamatatos ◽  
Julie Czartoski ◽  
Yu-Hsin Wan ◽  
Leah J. Homad ◽  
Vanessa Rubin ◽  
...  

Emerging SARS-CoV-2 variants have raised concerns about resistance to neutralizing antibodies elicited by previous infection or vaccination. We examined whether sera from recovered and naïve donors collected prior to, and following immunizations with existing mRNA vaccines, could neutralize the Wuhan-Hu-1 and B.1.351 variants. Pre-vaccination sera from recovered donors neutralized Wuhan-Hu-1 and sporadically neutralized B.1.351, but a single immunization boosted neutralizing titers against all variants and SARS-CoV-1 by up to 1000-fold. Neutralization was due to antibodies targeting the receptor binding domain and was not boosted by a second immunization. Immunization of naïve donors also elicited cross-neutralizing responses, but at lower titers. Our study highlights the importance of vaccinating both uninfected and previously infected persons to elicit cross-variant neutralizing antibodies.


Sign in / Sign up

Export Citation Format

Share Document