scholarly journals Magneto-Marangoni nano-boundary layer flow of water and ethylene glycol based γ Al2O3 nanofluids with non-linear thermal radiation effects

2018 ◽  
Vol 12 ◽  
pp. 340-348 ◽  
Author(s):  
N. Vishnu Ganesh ◽  
Ali J. Chamkha ◽  
Qasem M. Al-Mdallal ◽  
P.K. Kameswaran
2013 ◽  
Vol 29 (3) ◽  
pp. 559-568 ◽  
Author(s):  
G. C. Shit ◽  
R. Haldar ◽  
A. Sinha

AbstractA non-linear analysis has been made to study the unsteady hydromagnetic boundary layer flow and heat transfer of a micropolar fluid over a stretching sheet embedded in a porous medium. The effects of thermal radiation in the boundary layer flow over a stretching sheet have also been investigated. The system of governing partial differential equations in the boundary layer have reduced to a system of non-linear ordinary differential equations using a suitable similarity transformation. The resulting non-linear coupled ordinary differential equations are solved numerically by using an implicit finite difference scheme. The numerical results concern with the axial velocity, micro-rotation component and temperature profiles as well as local skin-friction coefficient and the rate of heat transfer at the sheet. The study reveals that the unsteady parameter S has an increasing effect on the flow and heat transfer characteristics.


AIAA Journal ◽  
1967 ◽  
Vol 5 (10) ◽  
pp. 1893-1894 ◽  
Author(s):  
R. J. TABACZYNSKI ◽  
LAWRENCE A. KENNEDY

2019 ◽  
Vol 16 (1) ◽  
pp. 208-224 ◽  
Author(s):  
Himanshu Upreti ◽  
Manoj Kumar

Purpose The purpose of this paper is to examine the effect of non-linear thermal radiation, Joule heating and viscous dissipation on the mixed convection boundary layer flow of MHD nanofluid flow over a thin moving needle. Design/methodology/approach The equations directing the flow are reduced into ODEs by implementing similarity transformation. The Runge–Kutta–Fehlberg method with a shooting technique was implemented. Findings Numerical outcomes for the coefficient of skin friction and the rate of heat transfer are tabulated and discussed. Also, the boundary layer thicknesses for flow and temperature fields are addressed with the aid of graphs. Originality/value Till now, no numerical study investigated the combined influence of Joule heating, non-linear thermal radiation and viscous dissipation on the mixed convective MHD flow of silver-water nanofluid flow past a thin moving needle. The numerical results for existing work are new and their novelty verified by comparing them with the work published earlier.


2014 ◽  
Vol 6 (2) ◽  
pp. 257-272 ◽  
Author(s):  
M. G. Reddy

The problem of laminar fluid flow which results from a permeable stretching of a flat surface in a nanofluid with the effects of heat radiation, magnetic field, velocity slip and convective boundary conditions have been investigated. The transport equations used in the analysis took into account the effect of Brownian motion and thermophoresis parameters. The solution for the velocity, temperature and nanoparticle concentration depends on parameters viz. thermal radiation parameter R, magnetic parameter M, Prandtl number Pr, Lewis number Le, Brownian motion parameter Nb, thermophoresis parameter Nt, velocity slip parameter A convection and Biot numbe Bi. Similarity transformation is used to convert the governing non-linear boundary-layer equations into coupled higher order non-linear ordinary differential equations. These equations are numerically solved using fourth order Runge-Kutta method along with shooting technique. An analysis has been carried out to elucidate the effects of governing parameters corresponding to various physical conditions. Numerical results are obtained for distributions of velocity, temperature and concentration, as well as, for the skin friction, local Nusselt number and local Sherwood number for several values of governing parameters. Keywords: Nanofluid, Boundary layer flow; Stretching sheet; Thermal radiation; MHD; Velocity slip; Convective boundary. © 2014 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. doi: http://dx.doi.org/10.3329/jsr.v6i2.17233 J. Sci. Res. 6 (2), 257-272 (2014)  


Sign in / Sign up

Export Citation Format

Share Document