scholarly journals Numerical analysis of flow and heat transfer enhancement in a horizontal pipe with P-TT and V-Cut twisted tape

2018 ◽  
Vol 12 ◽  
pp. 749-758 ◽  
Author(s):  
Azher M. Abed ◽  
Hasan Sh. Majdi ◽  
Zainab Hussein ◽  
Doaa Fadhil ◽  
Ammar Abdulkadhim
2013 ◽  
Vol 5 ◽  
pp. 256839
Author(s):  
Somchai Wongwises ◽  
Afshin J. Ghajar ◽  
Kwok-wing Chau ◽  
Octavio García Valladares ◽  
Balaram Kundu ◽  
...  

Author(s):  
Gongnan Xie ◽  
Bengt Sunde´n

Gas turbine blade tips encounter large heat load as they are exposed to the high temperature gas. A common way to cool the blade and its tip is to design serpentine passages with 180-deg turns under the blade tip-cap inside the turbine blade. Improved internal convective cooling is therefore required to increase the blade tip life time. This paper presents numerical predictions of turbulent fluid flow and heat transfer through two-pass channels with and without guide vanes placed in the turn regions using RANS turbulence modeling. The effects of adding guide vanes on the tip-wall heat transfer enhancement and the channel pressure loss were analyzed. The guide vanes have a height identical to that of the channel. The inlet Reynolds numbers are ranging from 100,000 to 600,000. The detailed three-dimensional fluid flow and heat transfer over the tip-walls are presented. The overall performances of several two-pass channels are also evaluated and compared. It is found that the tip heat transfer coefficients of the channels with guide vanes are 10∼60% higher than that of a channel without guide vanes, while the pressure loss might be reduced when the guide vanes are properly designed and located, otherwise the pressure loss is expected to be increased severely. It is suggested that the usage of proper guide vanes is a suitable way to augment the blade tip heat transfer and improve the flow structure, but is not the most effective way compared to the augmentation by surface modifications imposed on the tip-wall directly.


2020 ◽  
Vol 21 ◽  
pp. 572-577 ◽  
Author(s):  
A. Natarajan ◽  
R. Venkatesh ◽  
S. Gobinath ◽  
L. Devakumar ◽  
K. Gopalakrishnan

2018 ◽  
Vol 13 (1) ◽  
pp. 7-17
Author(s):  
Sibel Güneş ◽  
Toygun Dağdevir ◽  
Orhan Keklikcioğlu ◽  
Veysel Özceyhan

2021 ◽  
Author(s):  
Jaime Rios ◽  
Mehdi Kabirnajafi ◽  
Takele Gameda ◽  
Raid Mohammed ◽  
Jiajun Xu

The present study experimentally and numerically investigates the flow and heat transfer characteristics of a novel nanostructured heat transfer fluid, namely, ethanol/polyalphaolefin nanoemulsion, inside a conventionally manufactured minichannel of circular cross section and a microchannel heat exchanger of rectangular cross section manufactured additively using the Direct Metal Laser Sintering (DMLS) process. The experiments were conducted for single-phase flow of pure polyalphaolefin (PAO) and ethanol/PAO nanoemulsion fluids with two ethanol concentrations of 4 wt% and 8 wt% as well as for two-phase flow boiling of nanoemulsion fluids to study the effect of ethanol nanodroplets on the convective flow and heat transfer characteristics. Furthermore, the effects of flow regime of the working fluids on the heat transfer performance for both the minichannel and microchannel heat exchangers were examined within the laminar and transitional flow regimes. It was found that the ethanol/PAO nanoemulsion fluids can improve convective heat transfer compared to that of the pure PAO base fluid under both single- and two-phase flow regimes. While the concentration of nanoemulsion fluids did not reflect a remarkable distinction in single-phase heat transfer performance within the laminar regime, a significant heat transfer enhancement was observed using the nanoemulsion fluids upon entering the transitional flow regime. The heat transfer enhancement at higher concentrations of nanoemulsion within the transitional regime is mainly attributed to the enhanced interaction and interfacial thermal transport between ethanol nanodroplets and PAO base fluid. For two-phase flow boiling, heat transfer coefficients of ethanol/PAO nanoemulsion fluids were further enhanced when the ethanol nanodroplets underwent phase change. A comparative study on the flow and heat transfer characteristics was also implemented between the traditionally fabricated minichannel and additively manufactured microchannel of similar dimensions using the same working fluid of pure PAO and the same operating conditions. The results revealed that although the DMLS fabricated microchannel posed a higher pressure loss, a substantial heat transfer enhancement was achieved as compared to the minichannel heat exchanger tested under the same conditions. The non-post processed surface of the DMLS manufactured microchannel is likely to be the main contributor to the augmented heat transfer performance. Further studies are required to fully appreciate the possible mechanisms behind this phenomenon as well as the convective heat transfer properties of nanoemulsion fluids.


Sign in / Sign up

Export Citation Format

Share Document