scholarly journals Simulation of natural convection boiling heat transfer for refrigerant R-134a flow in a metal foam filled vertical tube

2019 ◽  
Vol 13 ◽  
pp. 100390 ◽  
Author(s):  
Ali Samir ◽  
Ihsan Y. Hussain
Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4617
Author(s):  
Sanghyun Nam ◽  
Dae Yeon Kim ◽  
Youngwoo Kim ◽  
Kyung Chun Kim

Heat transfer under flow boiling is better in a rectangular channel filled with open-cell metal foam than in an empty channel, but the high pressure drop is a drawback of the empty channel method. In this study, various types of metal foam insert configurations were tested to reduce the pressure drop while maintaining high heat transfer. Specifically, we measured the boiling heat transfer and pressure drop of a two-phase vertical upward flow of R245fa inside a channel. To measure the pressure and temperature differences of the metal foam, differential pressure transducers and T-type thermocouples were used at both ends of the test section. While the saturation pressure was kept constant at 5.9 bar, the steam quality at the inlet of the test section was changed from 0.05 to 0.99. The channel height, moreover, was 3 mm, and the mass flux ranged from 133 to 300 kg/m2s. The two-phase flow characteristics were observed through a high-speed visualization experiment. Heat transfer tended to increase with the mean vapor quality, and, as expected, the fully filled metal foam channel offered the highest thermal performance. The streamwise insert pattern model had the lowest heat transfer at a low mass flux. However, at a higher mass flux, the three different insert models presented almost the same heat transfer coefficients. We found that the streamwise pattern model had a very low pressure drop compared to that of the spanwise pattern models. The goodness factors of the flow area and the core volume of the streamwise patterned model were higher than those of the full-filled metal foam channel.


2001 ◽  
Vol 67 (653) ◽  
pp. 128-134
Author(s):  
Keishi TAKESHIMA ◽  
Terushige FUJII ◽  
Nobuyuki tAKENAKA ◽  
Hitoshi ASANO ◽  
Takamitsu KONDO

1997 ◽  
Vol 119 (1) ◽  
pp. 142-151 ◽  
Author(s):  
Shou-Shing Hsieh ◽  
Chun-Jen Weng

Measurements of pool-boiling heat transfer coefficients in distilled water and R-134a/oil mixtures with up to 10 percent (by weight) miscible EMKARATE RL refrigeration lubricant oil are extensively studied for a smooth tube and four rib-roughened tubes (rib pitch 39.4 mm, rib height 4 mm, rib width 15 mm, number of rib element 8, rib angle 30 deg–90 deg). Boiling data of pure refrigerants and oil mixtures, as well as the influences of heat flux level on heat transfer coefficient, are presented and discussed. A correlation is developed for predicting the heat transfer coefficient for both pure refrigerants and refrigerant-oil mixtures. Moreover, boiling visualizations were made to broaden our fundamental understanding of the pool boiling heat transfer mechanism for rib roughened surfaces with pure refrigerants and refrigerant-oil mixtures.


Sign in / Sign up

Export Citation Format

Share Document