scholarly journals Numerical investigation of unsteady flow across tandem square cylinders near a moving wall at Re = 100

Author(s):  
Rajendra S. Rajpoot ◽  
K. Anirudh ◽  
S. Dhinakaran
Author(s):  
Atsushi Okajima ◽  
Takahiro Kiwata ◽  
Satoru Yasui ◽  
Yoshiki Mori ◽  
Shigeo Kimura

Flow-induced streamwise oscillation of two tandem square cylinders has been studied by means of free-oscillation testing in a wind tunnel. One cylinder was elastically supported so as to allow it to move in the streamwise direction; the other was fixed to the tunnel sidewalls. Small values of the reduced mass-damping parameter (Cn ≤ 1.63) have been considered. When the upstream cylinder is free to oscillate, there are two excitation regions: the first for reduced velocity, Vr, in the range 2.5 ≤ Vr ≤ 5 and cylinder gap distance to reference-length ratio, s, between 0.3 and 2, is due to movement-induced excitation accompanied by symmetrical vortex shedding, while the second, for 0.75 ≤ s ≤ 1.5 and 4.5 ≤ Vr ≤ 6.5, is due to vortex excitation by alternate Karman vortex shedding, accompanied with unstable limit-cycle oscillation. For wide gap distances over 2.5, an excitation region of the upstream cylinder occurs for 3.5 ≤ Vr ≤ 4.7, which is due to alternate Karman vortex shedding, and resembles the streamwise oscillation of a single cylinder. On the other hand, when the downstream cylinder is free to oscillate for narrow gap distances of 0.3 ≤ s ≤ 0.75, the response characteristics have an excitation region due to alternate Karman vortex shedding from the two cylinders, connected by dead water region between them, for 3.2 ≤ Vr ≤ 5.4. When s is greater than 1, the downstream cylinder experiences buffeting by wake fluctuation of the upstream cylinder.


Sign in / Sign up

Export Citation Format

Share Document