scholarly journals Comparison between artificial neural network and random forest for effective disaggregation of building cooling load

Author(s):  
Ziwei Xiao ◽  
Cheng Fan ◽  
Jiaqi Yuan ◽  
Xinhua Xu ◽  
Wenjie Gang
2020 ◽  
Vol 38 (4A) ◽  
pp. 510-514
Author(s):  
Tay H. Shihab ◽  
Amjed N. Al-Hameedawi ◽  
Ammar M. Hamza

In this paper to make use of complementary potential in the mapping of LULC spatial data is acquired from LandSat 8 OLI sensor images are taken in 2019.  They have been rectified, enhanced and then classified according to Random forest (RF) and artificial neural network (ANN) methods. Optical remote sensing images have been used to get information on the status of LULC classification, and extraction details. The classification of both satellite image types is used to extract features and to analyse LULC of the study area. The results of the classification showed that the artificial neural network method outperforms the random forest method. The required image processing has been made for Optical Remote Sensing Data to be used in LULC mapping, include the geometric correction, Image Enhancements, The overall accuracy when using the ANN methods 0.91 and the kappa accuracy was found 0.89 for the training data set. While the overall accuracy and the kappa accuracy of the test dataset were found 0.89 and 0.87 respectively.


2019 ◽  
Vol 111 ◽  
pp. 05020 ◽  
Author(s):  
Ziwei Xiao ◽  
Jiaqi Yuan ◽  
Wenjie Gang ◽  
Chong Zhang ◽  
Xinhua Xu

The demand of building energy management has increased due to high energy saving potentials. Load monitor and disaggregation can provide useful information for building energy management systems with detailed and individual loads of the building, so corresponding energy efficient measures can be taken to reduce the energy consumption of buildings. The technique is investigated widely in residential buildings known as Non-Intrusive Load Monitoring (NILM). However, relevant studies are not sufficient for non-residential buildings, especially for the cooling loads. This paper proposes a NILM method for cooling load disaggregation using artificial neural network. The cooling load is disaggregated into four categories: building envelope load, occupant load, equipment load and fresh air load. Two approaches are used to realize the load disaggregation: one is based on the Fourier transfer of the cooling loads, the other takes the cooling load, dry-bulb temperature and humidity of outdoor air, and time as inputs. By implementing the methods in a metro station, the performance of the proposed method can be obtained. Results show that both approaches can realize the load disaggregation accurately, with a RMSE less than 11.2. The second approach is recommended with a higher accuracy.


2011 ◽  
Vol 383-390 ◽  
pp. 7746-7749 ◽  
Author(s):  
Wei Shun Huang ◽  
Ching Wei Chen ◽  
Cheng Wen Lee ◽  
Ching Liang Chen ◽  
Tien Shuen Jan ◽  
...  

The objective of the study is to focus on the application of the artificial neural network to configure a heat-radiating model for cooling towers within the parameters of fluctuating in air flow or cooling water flow. To achieve the objective, a cooling tower heat balancing equation have been used to instill the correlations between a cooling tower cooling load to the four predefined parameters. Based on the premise established, the parameters of a cooling tower’s air flow and cooling water flow in a modulated process are utilized in an experimental system for collecting relevant operating data. Lastly, the artificial neural network tool derived from the Matlab software is utilized to define the input parameters being – the cooling water temperature, ambient web-bulb temperature, cooling tower air flow, and cooling water flow, with an objective set to instilling a cooling tower model for defining a cooling tower cooling load. In addition, the tested figures are compared to the simulated figures for verifying the cooling tower model. By utilizing the method derived from the model, the mean error of between 0.72 and 2.13% is obtained, with R2 value rated at between 0.97 and 0.99. The experiment findings show a relatively high reliability that can be achieved for configuring a model by using the artificial neural network. With the support of an optimized computation method, the model can be applied as an optimization operating strategy for an air-conditioning system’s cooling water loop.


2021 ◽  
Vol 9 ◽  
Author(s):  
Brett Snider ◽  
Edward A. McBean ◽  
John Yawney ◽  
S. Andrew Gadsden ◽  
Bhumi Patel

The Severe Acute Respiratory Syndrome Coronavirus 2 pandemic has challenged medical systems to the brink of collapse around the globe. In this paper, logistic regression and three other artificial intelligence models (XGBoost, Artificial Neural Network and Random Forest) are described and used to predict mortality risk of individual patients. The database is based on census data for the designated area and co-morbidities obtained using data from the Ontario Health Data Platform. The dataset consisted of more than 280,000 COVID-19 cases in Ontario for a wide-range of age groups; 0–9, 10–19, 20–29, 30–39, 40–49, 50–59, 60–69, 70–79, 80–89, and 90+. Findings resulting from using logistic regression, XGBoost, Artificial Neural Network and Random Forest, all demonstrate excellent discrimination (area under the curve for all models exceeded 0.948 with the best performance being 0.956 for an XGBoost model). Based on SHapley Additive exPlanations values, the importance of 24 variables are identified, and the findings indicated the highest importance variables are, in order of importance, age, date of test, sex, and presence/absence of chronic dementia. The findings from this study allow the identification of out-patients who are likely to deteriorate into severe cases, allowing medical professionals to make decisions on timely treatments. Furthermore, the methodology and results may be extended to other public health regions.


Sign in / Sign up

Export Citation Format

Share Document