scholarly journals Global potential and limits of mangrove blue carbon for climate change mitigation

2021 ◽  
Author(s):  
Yiwen Zeng ◽  
Daniel A. Friess ◽  
Tasya Vadya Sarira ◽  
Kelly Siman ◽  
Lian Pin Koh
2019 ◽  
pp. 965-996 ◽  
Author(s):  
Oscar Serrano ◽  
Jeffrey J. Kelleway ◽  
Catherine Lovelock ◽  
Paul S. Lavery

2018 ◽  
Vol 14 (10) ◽  
pp. 20180251 ◽  
Author(s):  
Pierre Taillardat ◽  
Daniel A. Friess ◽  
Massimo Lupascu

Carbon fixed by vegetated coastal ecosystems (blue carbon) can mitigate anthropogenic CO 2 emissions, though its effectiveness differs with the spatial scale of interest. A literature review compiling carbon sequestration rates within key ecosystems confirms that blue carbon ecosystems are the most efficient natural carbon sinks at the plot scale, though some overlooked biogeochemical processes may lead to overestimation. Moreover, the limited spatial extent of coastal habitats minimizes their potential at the global scale, only buffering 0.42% of the global fossil fuel carbon emissions in 2014. Still, blue carbon plays a role for countries with moderate fossil fuel emissions and extensive coastlines. In 2014, mangroves mitigated greater than 1% of national fossil fuel emissions for countries such as Bangladesh, Colombia and Nigeria. Considering that the Paris Agreement is based on nationally determined contributions, we propose that mangrove blue carbon may contribute to climate change mitigation at this scale in some instances alongside other blue carbon ecosystems.


2021 ◽  
Author(s):  
Aaron Matthius Eger ◽  
Ezequiel Marzinelli ◽  
Rodrigo Baes ◽  
Caitlin Blain ◽  
Laura Blamey ◽  
...  

Underwater kelp forests have provided valuable ecosystem services for millennia. However, the global economic value of those services is largely unresolved. Kelp forests are also diminishing globally and efforts to manage these valuable resources are hindered without accurate estimates of the services kelp forests provide to society. We present the first global economic estimation of services - fisheries production, nutrient cycling, and carbon removal - provided by four major forest forming kelp genera (Macrocystis, Nereocystis, Ecklonia, and Laminaria). Each of these genera provides between $135,200 and $177,100/ ha/ year. Collectively, they contribute $684 billion/year worldwide. These values are primarily driven by fisheries and nitrogen removal, but kelp forests also have the potential to sequester 2.7 megatons of carbon from the atmosphere/year and may be considered blue carbon systems valuable for climate change mitigation. These findings highlight the value of kelp forests to society and will enable informed marine management decisions.


Author(s):  
Milica Stankovic ◽  
Rohani Ambo-Rappe ◽  
Filipo Carly ◽  
Floredel Dangan-Galon ◽  
Miguel D. Fortes ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Md Mizanur Rahman ◽  
Martin Zimmer ◽  
Imran Ahmed ◽  
Daniel Donato ◽  
Mamoru Kanzaki ◽  
...  

AbstractThe conservation of ecosystems and their biodiversity has numerous co-benefits, both for local societies and for humankind worldwide. While the co-benefit of climate change mitigation through so called blue carbon storage in coastal ecosystems has raised increasing interest in mangroves, the relevance of multifaceted biodiversity as a driver of carbon storage remains unclear. Sediment salinity, taxonomic diversity, functional diversity and functional distinctiveness together explain 69%, 69%, 27% and 61% of the variation in above- and belowground plant biomass carbon, sediment organic carbon and total ecosystem carbon storage, respectively, in the Sundarbans Reserved Forest. Functional distinctiveness had the strongest explanatory power for carbon storage, indicating that blue carbon in mangroves is driven by the functional composition of diverse tree assemblages. Protecting and restoring mangrove biodiversity with site-specific dominant species and other species of contrasting functional traits would have the co-benefit of maximizing their capacity for climate change mitigation through increased carbon storage.


Sci ◽  
2020 ◽  
Vol 2 (3) ◽  
pp. 67 ◽  
Author(s):  
Daniel M. Alongi

Mangrove forests store and sequester large area-specific quantities of blue carbon (Corg). Except for tundra and peatlands, mangroves store more Corg per unit area than any other ecosystem. Mean mangrove Corg stock is 738.9 Mg Corg ha−1 and mean global stock is 6.17 Pg Corg, which equates to only 0.4–7% of terrestrial ecosystem Corg stocks but 17% of total tropical marine Corg stocks. Per unit area, mangroves sequester 179.6 g Corg m−2a−1 and globally about 15 Tg Corg a−1. Mangroves sequester only 4% (range 1.3–8%) of Corg sequestered by terrestrial ecosystems, indicating that mangroves are a minor contributor to global C storage and sequestration. CO2 emissions from mangrove losses equate to 0.036 Pg CO2-equivalents a−1 based on rates of C sequestration but 0.088 Pg CO2-equivalents a−1 based on complete destruction for conversion to aquaculture and agriculture. Mangrove CO2 emissions account for only 0.2% of total global CO2 emissions but 18% of CO2 emissions from the tropical coastal ocean. Despite significant data limitations, the role of mangrove ecosystems in climate change mitigation is small at the global scale but more significant in the tropical coastal ocean and effective at the national and regional scale, especially in areas with high rates of deforestation and destruction.


2016 ◽  
Vol 2 (2) ◽  
pp. 1-13
Author(s):  
Swati Mohan Sappal ◽  
Prabhat Ranjan ◽  
Alagappan Ramanathan

Sci ◽  
2020 ◽  
Vol 2 (3) ◽  
pp. 57 ◽  
Author(s):  
Daniel M. Alongi

Mangrove forests store and sequester large area-specific quantities of blue carbon (Corg). Except for tundra and peatlands, mangroves store more Corg per unit area than any other ecosystem. Mean mangrove Corg stock is 738.9 Mg Corg ha−1 and mean global stock is 6.17 Pg Corg, which equates to only 0.4–7% of terrestrial ecosystem Corg stocks but 17% of total tropical marine Corg stocks. Seagrasses sequester more Corg per unit area than mangroves (179.6 g Corg m−2·a−1) but twice the Corg sequestered by mangroves globally (15 Tg Corg a−1). Mangroves sequester only 4% (range 1.3–8%) of Corg sequestered by terrestrial ecosystems, indicating that mangroves are a minor contributor to global C storage and sequestration. CO2 emissions from mangrove losses equate to 0.036 Pg CO2-equivalents a−1 based on rates of C sequestration but 0.088 Pg CO2-equivalents a−1 based on complete destruction for conversion to aquaculture and agriculture. Mangrove CO2 emissions account for only 0.2% of total global CO2 emissions but 18% of CO2 emissions from the tropical coastal ocean. Despite significant data limitations, the role of mangrove ecosystems in climate change mitigation is globally insignificant but may be more significant and effective at the national and regional scale.


Sign in / Sign up

Export Citation Format

Share Document