fossil fuel emissions
Recently Published Documents


TOTAL DOCUMENTS

138
(FIVE YEARS 44)

H-INDEX

25
(FIVE YEARS 3)

Author(s):  
Yongming Han ◽  
Zhisheng An ◽  
Richard Arimoto ◽  
Colin N. Waters ◽  
Tobias Schneider ◽  
...  

Author(s):  
A. Scott Denning

Carbon is among the most abundant substances in the universe; although severely depleted in Earth, it is the primary structural element in biochemistry. Complex interactions between carbon and climate have stabilized the Earth system over geologic time. Since the modern instrumental CO2 record began in the 1950s, about half of fossil fuel emissions have been sequestered in the oceans and land ecosystems. Ocean uptake of fossil CO2 is governed by chemistry and circulation. Net land uptake is surprising because it implies a persistent worldwide excess of growth over decay. Land carbon sinks include ( a) CO2 fertilization, ( b) nitrogen fertilization, ( c) forest regrowth following agricultural abandonment, and ( d ) boreal warming. Carbon sinks in both land and oceans are threatened by warming and are likely to weaken or even reverse as emissions fall with the potential for amplification of climate change due to the release of previously stored carbon. Fossil CO2 will persist for centuries and perhaps many millennia after emissions cease. ▪ About half the carbon from fossil fuel combustion is removed from the atmosphere by sink processes in the land and oceans, slowing the increase of CO2 and global warming. These sinks may weaken or even reverse as climate warms and emissions fall. ▪ The net land sink for CO2 requires that plants have been growing faster than they decay for many decades, causing carbon to build up in the biosphere over and above the carbon lost to deforestation, fire, and other disturbances. ▪ CO2 uptake by the oceans is slow because only the surface water is in chemical contact with the air. Cold water at depth is physically isolated by its density. Deep water mixes with the surface in about 1,000 years. The deep water does not know we are here yet! ▪ After fossil fuel emissions cease, much of the extra CO2 will remain in the atmosphere for many centuries or even millennia. The lifetime of excess CO2 depends on total historical emissions; 10% to 40% could last until the year 40,000 AD. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 50 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Thomas Kaminski ◽  
Marko Scholze ◽  
Peter Rayner ◽  
Michael Voßbeck ◽  
Michael Buchwitz ◽  
...  

Abstract The Paris Agreement establishes a transparency framework for anthropogenic carbon dioxide (CO2) emissions. It's core component are inventory-based national greenhouse gas emission reports, which are complemented by independent estimates derived from atmospheric CO2 measurements combined with inverse modelling. It is, however, not known whether such a Monitoring and Verification Support (MVS) capacity is capable of constraining estimates of fossil-fuel emissions to an extent that is sufficient to provide valuable additional information. The CO2 Monitoring Mission (CO2M), planned as a constellation of satellites measuring column-integrated atmospheric CO2 concentration (XCO2), is expected to become a key component of such an MVS capacity. Here we provide a novel assessment of the potential of a comprehensive data assimilation system using simulated XCO2 and other observations to constrain fossil fuel CO2 emission estimates for an exemplary 1-week period in 2008. We find that CO2M enables useful weekly estimates of country-scale fossil fuel emissions independent of national inventories. When extrapolated from the weekly to the annual scale, uncertainties in emissions are comparable to uncertainties in inventories, so that estimates from inventories and from the MVS capacity can be used for mutual verification. We further demonstrate an alternative, synergistic mode of operation, with the purpose of delivering a best fossil fuel emission estimate. In this mode, the assimilation system uses not only XCO2 and the other data streams of the previous (verification) mode, but also the inventory information. Finally, we identify further steps towards an operational MVS capacity.


Eos ◽  
2021 ◽  
Vol 102 ◽  
Author(s):  
Hannah Thomasy

Standardizing these corrections will help scientists understand ocean ecosystems.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Konstantinos Eleftheriadis ◽  
Maria I. Gini ◽  
Evangelia Diapouli ◽  
Stergios Vratolis ◽  
Vasiliki Vasilatou ◽  
...  

AbstractAir quality in urban areas and megacities is dependent on emissions, physicochemical process and atmospheric conditions in a complex manner. The impact on air quality metrics of the COVID-19 lockdown measures was evaluated during two periods in Athens, Greece. The first period involved stoppage of educational and recreational activities and the second severe restrictions to all but necessary transport and workplace activities. Fresh traffic emissions and their aerosol products in terms of ultrafine nuclei particles and nitrates showed the most significant reduction especially during the 2nd period (40–50%). Carbonaceous aerosol both from fossil fuel emissions and biomass burning, as well as aging ultrafine and accumulation mode particles showed an increase of 10–20% of average before showing a decline (5 to 30%). It is found that removal of small nuclei and Aitken modes increased growth rates and migration of condensable species to larger particles maintaining aerosol volume.


Author(s):  
Santanu Halder ◽  
Yogesh K. Tiwari ◽  
Vinu Valsala ◽  
M. G. Sreeush ◽  
S. Sijikumar ◽  
...  

2021 ◽  
Vol 7 (23) ◽  
pp. eabd6034
Author(s):  
C. Ronnie Drever ◽  
Susan C. Cook-Patton ◽  
Fardausi Akhter ◽  
Pascal H. Badiou ◽  
Gail L. Chmura ◽  
...  

Alongside the steep reductions needed in fossil fuel emissions, natural climate solutions (NCS) represent readily deployable options that can contribute to Canada’s goals for emission reductions. We estimate the mitigation potential of 24 NCS related to the protection, management, and restoration of natural systems that can also deliver numerous co-benefits, such as enhanced soil productivity, clean air and water, and biodiversity conservation. NCS can provide up to 78.2 (41.0 to 115.1) Tg CO2e/year (95% CI) of mitigation annually in 2030 and 394.4 (173.2 to 612.4) Tg CO2e cumulatively between 2021 and 2030, with 34% available at ≤CAD 50/Mg CO2e. Avoided conversion of grassland, avoided peatland disturbance, cover crops, and improved forest management offer the largest mitigation opportunities. The mitigation identified here represents an important potential contribution to the Paris Agreement, such that NCS combined with existing mitigation plans could help Canada to meet or exceed its climate goals.


2021 ◽  
Vol 14 (5) ◽  
pp. 3707-3719
Author(s):  
Aki Virkkula

Abstract. The Aethalometer model has been used widely for estimating the contributions of fossil fuel emissions and biomass burning to equivalent black carbon (eBC). The calculation is based on measured absorption Ångström exponents (αabs). The interpretation of αabs is ambiguous since it is well known that it not only depends on the dominant absorber but also on the size and internal structure of the particles, core size, and shell thickness. In this work the uncertainties of the Aethalometer-model-derived apparent fractions of absorption by eBC from fossil fuel and biomass burning are evaluated with a core–shell Mie model. Biomass-burning fractions (BB(%)) were calculated for pure and coated single BC particles for lognormal unimodal and bimodal size distributions of BC cores coated with ammonium sulfate, a scattering-only material. BB(%) was very seldom 0 % even though BC was the only absorbing material in the simulations. The shape of size distribution plays an important role. Narrow size distributions result in higher αabs and BB(%) values than wide size distributions. The sensitivity of αabs and BB(%) to variations in shell volume fractions is the highest for accumulation-mode particles. This is important because that is where the largest aerosol mass is. For the interpretation of absorption Ångström exponents it would be very good to measure BC size distributions and shell thicknesses together with the wavelength dependency of absorption.


2021 ◽  
Author(s):  
Priyanka Srivastava ◽  
Manish Naja ◽  
Hema Joshi ◽  
Mukunda M Gogoi ◽  
S Suresh Babu

<p>The serene environment of the Himalayas is experiencing adverse impact of air pollution, rising critically with the advent of rapid industrialization and urbanization. However, systematic long-term ground-based measurements are almost nonexistent in this region due to the prevailing extreme conditions and complex terrain. </p><p>In this context, we present insights from the long term ground based measurements of aerosols and trace gases carried at ARIES, (29.4<sup>o</sup>N, 79.5<sup>o</sup>E, 1958 m a.m.s.l) a high altitude site in the Central Himalayas. We also used satellite observations, back-air trajectories and radiative forcing estimations with these extensive observations to understand the variabilities, sources and radiative impact over this region. The higher temporal resolution online measurements during 2014-2020 revealed that daytime concentrations of OC, EC, CH<sub>4</sub> and CO were twice that of the night-time. It is shown that swiftly varying meteorological parameters along with boundary layer height during daytime are responsible for these changes at diurnal scales. Diurnal observations of EC are used to estimate radiative forcing (RF) and it is shown that atmospheric RF during afternoon is about 70% higher than the forenoon RF.</p><p>Residence time and concentration weighted trajectory analysis along with OC/EC ratio and fire estimates from MODIS show the influence of biomass burning in spring (MAM). Seasonal minimum for all the species occurs in the monsoon (JJA) due to extensive wet scavenging at the site. During winter (DJF), influence of local burning activities for heating and cooking, to aide in lower temperatures is shown.</p><p>Source apportionment estimate is used in BC and multiple regression approach is used in CO to segregate their biomass (BC<sub>bb</sub>/ CO<sub>bb</sub>), fossil fuel (BC<sub>ff/</sub> CO<sub>ff</sub>) and background components (CO<sub>bgd</sub>) components. The results reveal the dominance of fossil fuel emissions in BC (BC<sub>ff </sub>~76% BC<sub>bb </sub>~24%) and background component in CO followed by fossil fuel emissions (CO<sub>bgd </sub>~59%, CO<sub>ff </sub>~26%, CO<sub>bb </sub>~14%). Principal component analysis (PCA) applied to 23 chemical constituents of PM10 samples collected during October 2018−February 2019 identified the contribution of crustal/soil dust, biomass burning and industrial emissions at the site. Further, long term (2006-2020) aerosol properties acquired from the CALIPSO is used to study the vertical structure of aerosols and their subtypes and it is shown that the fine mode aerosols with particle depolarization ratio < 0.2 dominate the site.  </p><p>The study thus utilizes the long term dataset to precisely segregate the role of local meteorological conditions, transport, fossil fuel, biomass burning and local emissions impacting the site in different seasons and shows its particular importance in terms of radiation budget and constraining emission sources.</p>


2021 ◽  
Author(s):  
Thomas Kaminski ◽  
Marko Scholze ◽  
Peter Rayner ◽  
Sander Houweling ◽  
Michael Voßbeck ◽  
...  

<p>The Paris Agreement foresees to establish a transparency framework that builds upon inventory-based national greenhouse gas emission reports, complemented by independent emission estimates derived from atmospheric measurements through inverse modelling. The capability of such a Monitoring and Verification Support (MVS) capacity to constrain fossil fuel emissions to a sufficient extent has not yet been assessed. The CO2 Monitoring Mission (CO2M), planned as a constellation of satellites measuring column-integrated atmospheric CO2 concentration (XCO2), is expected to become a key component of an MVS capacity. </p><p>Here we present a CCFFDAS that operates at the resolution of the CO2M sensor, i.e. 2km by 2km, over a 200 km by 200 km region around Berlin. It combines models of sectorial fossil fuel CO2 emissions and biospheric fluxes with the Community Multiscale Air Quality model (coupled to a model of the plume rise from large power plants) as observation operator for XCO2 and tropospheric column NO2 measurements. Inflow from the domain boundaries is treated as extra unknown to be solved for by the CCFFDAS, which also includes prior information on the process model parameters. We discuss the sensitivities (Jacobian matrix) of simulated XCO2 and NO2 troposheric columns with respect to a) emissions from power plants, b) emissions from the surface and c) the lateral inflow and quantify the respective contributions to the observed signal. The Jacobian representation of the complete modelling chain allows us to evaluate data sets of simulated random and systematic CO2M errors in terms of posterior uncertainties in sectorial fossil fuel emissions. We provide assessments of XCO2 alone and in combination with NO2 on the posterior uncertainty in sectorial fossil fuel emissions for two 1-day study periods, one in winter and one in summer. We quantify the added value of the observations for emissions at a single point, at the 2km by 2km scale, at the scale of Berlin districts, and for  Berlin and further cities in our domain. This means the assessments include temporal and spatial scales typically not covered by inventories. Further, we quantify the effect of better information of atmospheric aerosol, provided by a multi-angular polarimeter (MAP) onboard CO2M, on the posterior uncertainties.</p><p>The assessments differentiate the fossil fuel CO2 emissions into two sectors, an energy generation sector (power plants) and the complement, which we call “other sector”. We find that XCO2 measurements alone provide a powerful constraint on emissions from larger power plants and a constraint on emissions from the other sector that increases when aggregated to larger spatial scales. The MAP improves the impact of the CO2M measurements for all power plants and for the other sector on all spatial scales. Over our study domain, the impact of the MAP is particularly high in winter. NO2 measurements provide a powerful additional constraint on the emissions from power plants and from the other sector.</p>


Sign in / Sign up

Export Citation Format

Share Document