The promise of stem cells for age-related macular degeneration and other retinal degenerative diseases

2013 ◽  
Vol 10 (1) ◽  
pp. e25-e33 ◽  
Author(s):  
Marco Zarbin
Medicina ◽  
2022 ◽  
Vol 58 (1) ◽  
pp. 102
Author(s):  
Ignacio Alcalde ◽  
Cristina Sánchez-Fernández ◽  
Carla Martín ◽  
Nagore De Pablo ◽  
Nahla Jemni-Damer ◽  
...  

Background and Objectives: Irreversible visual impairment is mainly caused by retinal degenerative diseases such as age-related macular degeneration and retinitis pigmentosa. Stem cell research has experienced rapid progress in recent years, and researchers and clinical ophthalmologists are trying to implement this promising technology to treat retinal degeneration. The objective of this systematic review is to analyze currently available data from clinical trials applying stem cells to treat human retinal diseases. Materials and Methods: We performed a systematic literature search in PubMed to identify articles related with stem cell therapies to retinal diseases published prior to September 2021. Furthermore, a systematic search in ClinicalTrials (NIH U.S. National Library of Medicine) was performed to identify clinical trials using stem cells to treat retinal diseases. A descriptive analysis of status, conditions, phases, interventions, and outcomes is presented here. Conclusions: To date, no available therapy based on stem cell transplantation is approved for use with patients. However, numerous clinical trials are currently finishing their initial phases and, in general, the outcomes related to implantation techniques and their long-term safety seem promising. In the next few years, we expect to see quantifiable results pertaining to visual function improvement.


2019 ◽  
pp. 143-148
Author(s):  
L.K. Moshetova ◽  
◽  
O.I. Abramova ◽  
I.N. Saburina ◽  
K.I. Turkina ◽  
...  

2021 ◽  
Vol 21 (4) ◽  
pp. 215-219
Author(s):  
A.K. Drakon ◽  
◽  
A.G. Kurguzova ◽  
V.M. Sheludchenko ◽  
N.B. Korchazhkina ◽  
...  

Age-related macular degeneration (AMD) is the leading cause of blindness in people over 55 in developed countries. Moreover, the number of these patients will increase growth as life expectancy increases. It is estimated that late AMD accounts for half of blindness and low vision cases in European countries. A myriad of studies is currently underway to discover cutting-edge, effective therapeutic modalities. Gene therapy is a novel alternative to regular intravitreal injections of anti-VEGF agents for late wet AMD. This technique’s heart is a specific gene delivery to target cells to generate natural VEGF inhibitors. Gene therapy affecting the complement system to deactivate its end product, the membrane attack complex, is reasonable in late atrophic AMD. Studies on stem cell therapy for late atrophic AMD undergo as well. It was demonstrated that retinal pigment epithelium (RPE) cells derived from human embryonic stem cells or induced pluripotent stem cells express typical RPE markers that can phagocytize photoreceptor segments. Electrical stimulation and magnet therapy are already introduced into clinical practice to rehabilitate patients with late AMD. Magnetic and electrical fields improve impulse transmitting, activate intracellular and tissue regeneration of the retina. Recent findings are promising but require further in-depth studies. Keywords: age-related macular degeneration, retinal scar, gene therapy, stem cells, physiotherapy, rehabilitative medicine. For citation: Drakon A.K., Kurguzova A.G., Sheludchenko V.M., Korchazhkina N.B. Non-medical treatment for late age-related macular degeneration. Russian Journal of Clinical Ophthalmology. 2021;21(4):215–219 (in Russ.). DOI: 10.32364/2311-7729-2021-21-4-215-219.


2018 ◽  
Vol 19 (7) ◽  
pp. 2118 ◽  
Author(s):  
Andrea Maugeri ◽  
Martina Barchitta ◽  
Maria Mazzone ◽  
Francesco Giuliano ◽  
Guido Basile ◽  
...  

The role of epigenetic alterations in the pathogenesis of retinal degenerative diseases, including age-related macular degeneration (AMD), has been pending so far. Our study investigated the effect of oxidative stress and inflammation on DNA methyltransferases (DNMTs) and Sirtuin 1 (SIRT1) functions, as well as on long interspersed nuclear element-1 (LINE-1) methylation, in human retinal pigment epithelial (ARPE-19) cells. Therefore, we evaluated whether treatment with resveratrol may modulate DNMT and SIRT1 functions and restore changes in LINE-1 methylation. Cells were treated with 25 mU/mL glucose oxidase (GOx) or 10 µg/mL lipopolysaccharide (LPS) to mimic oxidative or inflammatory conditions, respectively. Oxidative stress decreased DNMT1, DNMT3a, DNMT3b, and SIRT1 expression (p-values < 0.05), as well as total DNMTs (−28.5%; p < 0.0001) and SIRT1 (−29.0%; p < 0.0001) activities. Similarly, inflammatory condition decreased DNMT1 and SIRT1 expression (p-values < 0.05), as well as total DNMTs (−14.9%; p = 0.007) and SIRT1 (−20.1%; p < 0.002) activities. Interestingly, GOx- and LPS-treated cells exhibited lower LINE-1 methylation compared to controls (p-values < 0.001). We also demonstrated that treatment with 10 μM resveratrol for 24 h counteracted the detrimental effect on DNMT and SIRT1 functions, and LINE-1 methylation, in cells under oxidative and inflammatory conditions. However, further studies should explore the perspectives of resveratrol as a suitable strategy for the prevention and/or treatment of retinal degenerative diseases.


2020 ◽  
Vol 21 (3) ◽  
pp. 704 ◽  
Author(s):  
Dmitry V. Chistyakov ◽  
Viktoriia E. Baksheeva ◽  
Veronika V. Tiulina ◽  
Sergei V. Goriainov ◽  
Nadezhda V. Azbukina ◽  
...  

Ocular inflammation contributes to the pathogenesis of blind-causing retinal degenerative diseases, such as age-related macular degeneration (AMD) or photic maculopathy. Here, we report on inflammatory mechanisms that are associated with retinal degeneration induced by bright visible light, which were revealed while using a rabbit model. Histologically and electrophysiologically noticeable degeneration of the retina is preceded and accompanied by oxidative stress and inflammation, as evidenced by granulocyte infiltration and edema in this tissue, as well as the upregulation of total protein, pro-inflammatory cytokines, and oxidative stress markers in aqueous humor (AH). Consistently, quantitative lipidomic studies of AH elucidated increase in the concentration of arachidonic (AA) and docosahexaenoic (DHA) acids and lyso-platelet activating factor (lyso-PAF), together with pronounced oxidative and inflammatory alterations in content of lipid mediators oxylipins. These alterations include long-term elevation of prostaglandins, which are synthesized from AA via cyclooxygenase-dependent pathways, as well as a short burst of linoleic acid derivatives that can be produced by both enzymatic and non-enzymatic free radical-dependent mechanisms. The upregulation of all oxylipins is inhibited by the premedication of the eyes while using mitochondria-targeted antioxidant SkQ1, whereas the accumulation of prostaglandins and lyso-PAF can be specifically suppressed by topical treatment with cyclooxygenase inhibitor Nepafenac. Interestingly, the most prominent antioxidant and anti-inflammatory benefits and overall retinal protective effects are achieved by simultaneous administrating of both drugs indicating their synergistic action. Taken together, these findings provide a rationale for using a combination of mitochondria-targeted antioxidant and cyclooxygenase inhibitor for the treatment of inflammatory components of retinal degenerative diseases.


Sign in / Sign up

Export Citation Format

Share Document