sirt1 expression
Recently Published Documents


TOTAL DOCUMENTS

262
(FIVE YEARS 87)

H-INDEX

35
(FIVE YEARS 8)

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Hui Liu ◽  
Tingting Zhang ◽  
Min Liu ◽  
Chunhong Wang ◽  
Jinfeng Yan

Silent mating type information regulation 2 homolog 1 (SIRT1) has been reported to inhibit osteoarthritic gene expression in chondrocytes. Here, efforts in this study were made to unveil the specific role of SIRT1 in the therapy of acupuncture on cartilage degeneration in osteoarthritis (OA). Specifically, OA was established by the anterior cruciate ligament transection method in the right knee joint of rats, subsequent to which acupuncture was performed on two acupoints. Injection with shSIRT1 sequence–inserted lentiviruses was conducted to investigate the role of SIRT1 in acupuncture-mediated OA. Morphological changes and cell apoptosis in rat OA cartilages were examined by safranin-O staining and terminal deoxynucleotidyl transferase-mediated nick-end labeling (TUNEL) assay, respectively. The serum levels of tumor necrosis factor (TNF)-α and interleukin (IL)-2 in OA rats were assessed by enzyme-linked immunosorbent assay (ELISA). The expressions of SIRT1, cartilage matrix degradation-related proteins (matrix metalloproteinase (MMP)-9 and ADAMTS5), NF-κB signaling-related markers (p-p65/p65 and p-IκBα/IκBα), and cartilage matrix synthesis-related proteins (collagen II and aggrecan) in the OA cartilage were analyzed by western blot. As a result, acupuncture counteracted OA-associated upregulation of TNF-α, IL-2, cartilage matrix degradation-related proteins, and NF-κB signaling-related markers, morphological damage, apoptosis, SIRT1 downregulation, and loss of cartilage matrix synthesis-related proteins in rat articular cartilages. SIRT1 silencing reversed acupuncture-induced counteractive effects on the aforementioned OA-associated phenomena (except apoptosis, the experiment regarding which under SIRT1 silencing was not performed). Collectively, acupuncture inhibited chondrocyte apoptosis, inflammation, NF-κB signaling activation, and cartilage matrix degradation by upregulating SIRT1 expression to delay OA-associated cartilage degeneration.


2021 ◽  
Vol 22 (24) ◽  
pp. 13198
Author(s):  
Hasen Alhebshi ◽  
Kun Tian ◽  
Lipsita Patnaik ◽  
Rebecca Taylor ◽  
Pavel Bezecny ◽  
...  

Mutations in the p53 tumor suppressor are found in over 50% of cancers. p53 function is controlled through posttranslational modifications and cofactor interactions. In this study, we investigated the posttranslationally modified p53, including p53 acetylated at lysine 382 (K382), p53 phosphorylated at serine 46 (S46), and the p53 cofactor TTC5/STRAP (Tetratricopeptide repeat domain 5/ Stress-responsive activator of p300-TTC5) proteins in lung cancer. Immunohistochemical (IHC) analysis of lung cancer tissues from 250 patients was carried out and the results were correlated with clinicopathological features. Significant associations between total or modified p53 with a higher grade of the tumour and shorter overall survival (OS) probability were detected, suggesting that mutant and/or modified p53 acts as an oncoprotein in these patients. Acetylated at K382 p53 was predominantly nuclear in some samples and cytoplasmic in others. The localization of the K382 acetylated p53 was significantly associated with the gender and grade of the disease. The TTC5 protein levels were significantly associated with the grade, tumor size, and node involvement in a complex manner. SIRT1 expression was evaluated in 50 lung cancer patients and significant positive correlation was found with p53 S46 intensity, whereas negative TTC5 staining was associated with SIRT1 expression. Furthermore, p53 protein levels showed positive association with poor OS, whereas TTC5 protein levels showed positive association with better OS outcome. Overall, our results indicate that an analysis of p53 modified versions together with TTC5 expression, upon testing on a larger sample size of patients, could serve as useful prognostic factors or drug targets for lung cancer treatment.


2021 ◽  
Vol 25 (Suppl 2) ◽  
pp. S72-80
Author(s):  
Jae-Min Lee ◽  
Jongmin Park ◽  
Joo-Hee Lee ◽  
Min Kyung Song ◽  
Youn-Jung Kim

Purpose: Silent information regulator 1 (SIRT1) in the brain is essential for maintaining cellular homeostasis and plays a neuroprotective role in cerebral ischemia and neurodegenerative disorders. The effect of preischemic treadmill exercise on chronic cerebral hypoperfusion (CCH)-induced spatial learning memory impairment, microvascular injury, and blood-brain barrier (BBB) disruption in relation with SIRT1 expression was evaluated.Methods: Prior to bilateral common carotid artery occlusion (BCCAO) surgery, the rats in the exercise groups performed low-intensity treadmill running for 30 minutes once daily during 8 weeks. BCCAO surgery was performed on male Wistar rats at 12 weeks of age. Spatial learning memory was measured using the Morris water maze test. Neuronal nuclear antigen, SIRT1, and rat endothelial cells antigen 1 were determined by immunohistochemistry and platelet-derived growth factor receptor beta was determined by immunofluorescence.Results: Preischemic treadmill exercise ameliorated spatial learning memory impairment and enhanced SIRT1 expression in the BCCAO rats. Preischemic treadmill exercise ameliorated BCCAO-induced damage to microvasculature and pericytes that make up the BBB. The effect of preischemic treadmill exercise was lost with sirtinol treatment.Conclusions: These results can apply treadmill exercise prior to cerebral ischemia as a rational preventive and therapeutic intervention strategy to improve cognitive dysfunction in CCH patients.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Mingming Kang ◽  
Fangchao Ji ◽  
Xingyuan Sun ◽  
Hongbin Liu ◽  
Chenxin Zhang

Ischemic stroke is a kind of disease with high mortality and high disability, which brings a huge burden to the public health system (Hu et al. (2017)), and it poses a serious threat to the quality of life of patients. Cerebral ischemia/reperfusion injury is an important pathophysiological mechanism. This study aims to assess the mechanism of SNHG15 in the occurrence and development of cerebral ischemia/reperfusion injury of nerve cells and to investigate its potential value for diagnosis and treatment. SNHG15 targeted miRNA molecules and target genes were predicted with bioinformatics tools such as StarBase and TargetScan. The process of ischemic reperfusion in cerebral apoplexy in normal cultured and oxygen-glucose-deprived and reoxygenated neurons was simulated with RT-PCR and western blot technique. The expressions of SNHG15 and miR-141 were detected with qPCR, and the expressions of SIRT1 and p65, TNF-α, ROS, iNOS, and IL-6 were detected with western blot. Meanwhile, SNHG15 siRNAs and miR-141 mimics were transfected for SH-SY5Y, with western blot testing. And the expressions of miR-141, SIRT1, and p65, TNF-α, ROS, iNOS, and IL-6 were tested. According to the prediction with bioinformatics tools of StarBase and TargetScan, miR-141 is the target of lncSNHG15. In the luciferase reporter plasmid double-luciferase assay, miR-141 and SIRT1 were defined as the target relationship. In the oxygen-glucose-deprived reoxygenation model group, SNHG15 expression increased, miR-141 expression decreased, SIRT1 expression increased, and the expressions of p65, TNF-α, ROS, iNOS, and IL-6 decreased. In the SNHG15-siRNA-transfected oxygen-glucose-deprived reoxygenation cell model group, miR-141 expression increased, SIRT1 expression decreased, and the expressions of p65, TNF-α, and IL-6 increased compared with the si-NC group. In the miR-141-mimic-transfected oxygen-glucose-deprived reoxygenation cell model, SNHG15 expression decreased, SIRT1 expression decreased, and the expressions of p65, TNF-α, IL-1β, and IL-6 increased. In conclusion, SNHG15 expression increased during the process of oxygen-glucose-deprived reoxygenation, and the oxidative stress process was reduced by miR-141/SIRT1.


Author(s):  
Yujing Wang ◽  
Jing Wang ◽  
Chunmei Liu ◽  
Min Li

SIRT1 (silent information regulator 1), a NAD+-dependent III class histone deacetylase, plays crucial roles in cell proliferation, apoptosis, senescence, metabolism, and stress responses. Nevertheless, the role of SIRT1 in tumorigenesis remains unclear. In the present study, we measured expression levels of SIRT1 and HPV16 E7 protein in cervical cancer tissue and calculated their correlations. We measured the effect of silencing SIRT1 on the proliferation, migration, invasion, and apoptosis in human cervical cancer SiHa cells. Immunohistochemistry results revealed that the expression of SIRT1 was upregulated with progression from CINII-III to cervical cancer, but was not expressed in normal cervical tissues and CINI. There was a positive correlation between SIRT1 expression and HPV16 E7 expression in cervical cancer tissues, and silencing of HPV16 E7 downregulated the expression of SIRT1. Depletion of SIRT1 significantly downregulated SIRT1 expression, and inhibited proliferation, migration, and invasion of SiHa cells, inducing apoptosis. Taken together, the data suggest that SIRT1 promotes cervical cancer carcinogenesis. SIRT1 inhibition is a potential treatment strategy for cervical cancer.


2021 ◽  
Vol 8 ◽  
Author(s):  
Baohui Yuan ◽  
He Liu ◽  
Xiaoliang Dong ◽  
Xiaohua Pan ◽  
Xun Sun ◽  
...  

Neointima formation is a serious complication caused by mechanical trauma to the vessel. (R)-4,6-dimethoxy-3-(4-methoxy phenyl)-2,3-dihydro-1H-indanone [(R)-TML 104] is a synthesized analog of the natural product resveratrol sesquiterpenes (±)-isopaucifloral F. The present study aimed to investigate the effects and underlying mechanisms of (R)-TML104 on neointima formation. Our results showed that (R)-TML104 prevented neointima formation based on a carotid artery injury model in mice. Furthermore, (R)-TML104 inhibited platelet-derived growth factor-BB (PDGF-BB)-induced vascular smooth muscle cells (VSMC) phenotypic transformation, evidenced by increased α-smooth muscle actin, reduced VSMC proliferation, and migration. Simultaneously, (R)-TML104 upregulated sirtuin-1 (SIRT1) expression in VSMC. We further uncovered that SIRT1 expression is critical for the inhibitory effects of (R)-TML104 on PDGF-BB-induced VSMC phenotypic transformation in vitro and injury-induced neointima formation in vivo. Finally, (R)-TML104-upregulated SIRT1 inhibited PDGF-BB-induced VSMC phenotypic transformation by downregulating nicotinamide adenine dinucleotide phosphate oxidase 4 expression via decreasing nuclear factor-κB acetylation. Taken together, these results revealed that (R)-TML104 upregulates SIRT1 expression and ameliorates neointima formation. Therefore, the application of (R)-TML104 may constitute an effective strategy to ameliorate neointima formation.


Author(s):  
Tae Hoon Kim ◽  
Steven L Young ◽  
Tsutomu Sasaki ◽  
Jeffrey L Deaton ◽  
David P Schammel ◽  
...  

Abstract Context Progesterone resistance, a known pathologic condition associated with a reduced cellular response to progesterone and heightened estrogen responses, appears to have a normal physiologic role in mammalian reproduction. The molecular mechanism responsible for progesterone resistance in normal and abnormal endometrium remains unclear. Objective To examine the roles of Sirtuin-1 (SIRT1) in normal endometrium as well as endometrium associated with infertility and endometriosis, as an epigenetic modulator associated with progesterone resistance. Methods SIRT1 expression was examined by Western blot, RT-qPCR and immunohistochemistry in mouse uterus and human endometrium. Mice with uterine specific Sirt1 overexpression were developed to examine SIRT1’s role in endometrial function and endometriosis development. EX-527, a SIRT1 inhibitor, and SRT1720, a SIRT1 agonist, were also used to evaluate SIRT1 effect on endometriosis. Results In normal healthy women, endometrial SIRT1 is expressed only during menses. SIRT1 was dramatically overexpressed in the endometrium from women with endometriosis in both the epithelium and strom. In mice, SIRT1 is expressed at the time of implantation between day 4.5 and 5.5 of pregnancy. Overexpression of SIRT1 (Sirt1  over) in the mouse uterus leads to subfertility due to implantation failure and decidualization defects and progesterone resistance. SIRT1 overexpression in endometriotic lesion promotes worsening endometriosis development. EX-527 (SIRT1 inhibitor) significantly reduced the number of endometriotic lesions in the mouse endometriosis model. Conclusions SIRT1 expression and progesterone resistance appears to play -roles in normal endometrial functions. Aberrant SIRT1 expression contributes to progesterone resistance and may participate in the pathophysiology of endometriosis. SIRT1 is a novel and targetable protein for the diagnosis as well as treatment of endometriosis and the associated infertility seen in this disease.


Author(s):  
Fang Peng ◽  
Xianhua Huang ◽  
Weimei Shi ◽  
Yaosheng Xiao ◽  
Qi Jin ◽  
...  

Dyslipidemia has been associated with the development of osteoarthritis. Our previous study found that 5,7,3′,4′-tetramethoxyflavone (TMF) exhibited protective activities against the pathological changes of osteoarthritis. Aim: To investigate the roles of TMF in regulating ABCA1-mediated cholesterol metabolism. Methods: Knockdown and overexpression were employed to study gene functions. Protein–protein interaction was investigated by co-immunoprecipitation, and the subcellular locations of proteins were studied by immunofluorescence. Results: IL-1β decreased ABCA1 expression and induced apoptosis. Therapeutically, TMF ameliorated the effects of IL-1β. FOXO3a knockdown expression abrogated the effects of TMF, and FOXO3a overexpression increased ABCA1 expression by interacting with LXRα. TMF promoted FOXO3a nuclear translocation by activating SIRT1 expression. Conclusions: TMF ameliorates cholesterol dysregulation by increasing the expression of FOXO3a/LXRα/ABCA1 signaling through SIRT1 in C28/I2 cells.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaoyan Lv ◽  
Yali Zhao ◽  
Xuehan Yang ◽  
Hao Han ◽  
Yue Ge ◽  
...  

Pancreatic β-cell dysfunction is a key link during the progression of type 2 diabetes (T2DM), and SIRT1 participates in the regulation of various physiological activities of islet β-cells. However, as a key link in signal transduction, it is not clear how SIRT1 is regulated. By TargetScan prediction, we found that miR-204, which is enriched in islets, has highly complementary binding sites with SIRT1. Therefore, we speculate that miR-204 may be the upstream regulatory target of SIRT1 in islets and thus participate in the occurrence of β-cell dysfunction. In this study, we explored the association between miR-204 and β-cell dysfunction, the therapeutic effects of berberine (BBR) on β-cell function and the possible mechanisms. We found that miR-204 increased and SIRT1 mRNA and protein levels decreased significantly in islets both in vivo and in vitro. MIN6 cells induced by palmitic acid exhibited increased apoptosis, and the accumulation of insulin and ATP in the supernatant decreased. Importantly, palmitic acid treatment combined with miR-204 silencing showed opposite changes. MiR-204 overexpression in MIN6 cells increased apoptosis and decreased insulin and ATP production and SIRT1 expression. SIRT1 overexpression reversed the damage to β-cells caused by miR-204. The BBR treatment effectively improved insulin synthesis, reduced miR-204 levels, and increased SIRT1 expression in islet tissue in diabetic mice. Overexpression of miR-204 reversed the protective effect of BBR on apoptosis and insulin secretion in MIN6 cells. Our study identifies a novel correlation between miR-204 and β-cell dysfunction in T2DM and shows that administration of BBR leads to remission of β-cell dysfunction by regulating the miR-204/SIRT1 pathway.


Sign in / Sign up

Export Citation Format

Share Document