Comparison of the in vitro activity of echinocandins against Candida albicans , Candida dubliniensis , and Candida africana by time–kill curves

2015 ◽  
Vol 82 (1) ◽  
pp. 57-61 ◽  
Author(s):  
Sandra Gil-Alonso ◽  
Nerea Jauregizar ◽  
Emilia Cantón ◽  
Elena Eraso ◽  
Guillermo Quindós
2002 ◽  
Vol 46 (11) ◽  
pp. 3591-3596 ◽  
Author(s):  
Stefano P. Bachmann ◽  
Kacy VandeWalle ◽  
Gordon Ramage ◽  
Thomas F. Patterson ◽  
Brian L. Wickes ◽  
...  

ABSTRACT Most manifestations of candidiasis are associated with biofilm formation on biological or inanimate surfaces. Candida albicans biofilms are recalcitrant to treatment with conventional antifungal therapies. Here we report on the activity of caspofungin, a new semisynthetic echinocandin, against C. albicans biofilms. Caspofungin displayed potent in vitro activity against sessile C. albicans cells within biofilms, with MICs at which 50% of the sessile cells were inhibited well within the drug's therapeutic range. Scanning electron microscopy and confocal scanning laser microscopy were used to visualize the effects of caspofungin on preformed C. albicans biofilms, and the results indicated that caspofungin affected the cellular morphology and the metabolic status of cells within the biofilms. The coating of biomaterials with caspofungin had an inhibitory effect on subsequent biofilm development by C. albicans. Together these findings indicate that caspofungin displays potent activity against C. albicans biofilms in vitro and merits further investigation for the treatment of biofilm-associated infections.


2007 ◽  
Vol 163 (3) ◽  
pp. 137-143 ◽  
Author(s):  
Miao He ◽  
Minquan Du ◽  
Mingwen Fan ◽  
Zhuan Bian

Author(s):  
Beverly Murray ◽  
Cindy Wolfe ◽  
Andrea Marra ◽  
Chris Pillar ◽  
Dean Shinabarger

Abstract Background Ibezapolstat (ACX-362E) is the first DNA polymerase IIIC inhibitor undergoing clinical development for the oral treatment of Clostridioides difficile infection (CDI). Methods In this study, the in vitro activity of ibezapolstat was evaluated against a panel of 104 isolates of C. difficile, including those with characterized ribotypes (e.g. 027 and 078) and those producing toxin A or B and was shown to have similar activity to those of comparators against these strains. Results The overall MIC50/90 (mg/L) for ibezapolstat against evaluated C. difficile was 2/4, compared with 0.5/4 for metronidazole, 1/4 for vancomycin and 0.5/2 for fidaxomicin. In addition, the bactericidal activity of ibezapolstat was evaluated against actively growing C. difficile by determining the MBC against three C. difficile isolates. Time–kill kinetic assays were additionally performed against the three C. difficile isolates, with metronidazole and vancomycin as comparators. Conclusions The killing of C. difficile by ibezapolstat was observed to occur at concentrations similar to its MIC, as demonstrated by MBC:MIC ratios and reflected in time–kill kinetic assays. This activity highlights the therapeutic potential of ibezapolstat for the treatment of CDI.


1997 ◽  
Vol 41 (5) ◽  
pp. 1156-1157 ◽  
Author(s):  
O Uzun ◽  
S Kocagöz ◽  
Y Cetinkaya ◽  
S Arikan ◽  
S Unal

The in vitro activity of LY303366, a new echinocandin derivative, was evaluated with 191 yeast isolates by a broth microdilution method. The MICs at which 50% of the isolates were inhibited were 0.125 microg/ml for Candida albicans and C. tropicalis, 0.25 microg/ml for C. krusei, C. kefyr, and C. glabrata, and 2.0 microg/ml for C. parapsilosis.


Antibiotics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 885
Author(s):  
Soraya Herrera-Espejo ◽  
Tania Cebrero-Cangueiro ◽  
Gema Labrador-Herrera ◽  
Jerónimo Pachón ◽  
María Eugenia Pachón-Ibáñez ◽  
...  

Multidrug-resistant (MDR) Pseudomonas aeruginosa is a public health problem causing both community and hospital-acquired infections, and thus the development of new therapies for these infections is critical. The objective of this study was to analyze in vitro the activity of pentamidine as adjuvant in combinations to antibiotics against seven clinical P. aeruginosa strains. The Minimum Inhibitory Concentration (MIC) was determined following standard protocols, and the results were interpreted according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints; however, the gentamicin activity was interpreted according to the Clinical and Laboratory Standards Institute (CLSI) recommendations. The bactericidal in vitro activity was studied at 1×MIC concentrations by time–kill curves, and also performed in three selected strains at 1/2×MIC of pentamidine. All studies were performed in triplicate. The pentamidine MIC range was 400–1600 μg/mL. Four of the strains were MDR, and the other three were resistant to two antibiotic families. The combinations of pentamidine at 1×MIC showed synergistic activity against all the tested strains, except for pentamidine plus colistin. Pentamidine plus imipenem and meropenem were the combinations that showed synergistic activity against the most strains. At 1/2×MIC, pentamidine plus antibiotics were synergistic with all three analyzed strains. In summary, pentamidine in combination with antibiotics showed in vitro synergy against multidrug-resistant P. aeruginosa clinical strains, which suggests its possible use as adjuvant to antibiotics for the therapy of infections from MDR P. aeruginosa.


Sign in / Sign up

Export Citation Format

Share Document