Preparation of a composite phase change material with high thermal storage capacity using modified expanded graphite as the matrix

2021 ◽  
pp. 108736
Author(s):  
Shengjie Ren ◽  
Jinhong Li ◽  
Beifeng Zhang ◽  
Kaiyue Huang ◽  
Yunbing Bai
2011 ◽  
Vol 399-401 ◽  
pp. 1302-1306 ◽  
Author(s):  
Wei Hua Li ◽  
Jin Feng Mao ◽  
Li Jun Wang ◽  
Lu Yan Sui

The aim of the paper is to analyze the effect of the additives on thermal conductivity of the phase change material. The experiment about heat storage and heat release performance of the composite phase change material which uses sodium acetate trihydrate as host material is studied. The effect of the expanded graphite on the composite phase change material is investigated. The results show that: expanded graphite which can be dispersed evenly in the composite phase change material, the thermal stability is well, significantly improve the thermal conductivity of the composite phase change material.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Jiangyun Zhang ◽  
Xinxi Li ◽  
Fengqi He ◽  
Jieshan He ◽  
Zhaoda Zhong ◽  
...  

The temperature has to be controlled adequately to maintain the electric vehicles (EVs) within a safety range. Using paraffin as the heat dissipation source to control the temperature rise is developed. And the expanded graphite (EG) is applied to improve the thermal conductivity. In this study, the paraffin and EG composite phase change material (PCM) was prepared and characterized. And then, the composite PCM have been applied in the 42110 LiFePO4 battery module (48 V/10 Ah) for experimental research. Different discharge rate and pulse experiments were carried out at various working conditions, including room temperature (25°C), high temperature (35°C), and low temperature (−20°C). Furthermore, in order to obtain the practical loading test data, a battery pack with the similar specifications by 2S∗2P with PCM-based modules were installed in the EVs for various practical road experiments including the flat ground, 5°, 10°, and 20° slope. Testing results indicated that the PCM cooling system can control the peak temperature under 42°C and balance the maximum temperature difference within 5°C. Even in extreme high-discharge pulse current process, peak temperature can be controlled within 50°C. The aforementioned results exhibit that PCM cooling in battery thermal management has promising advantages over traditional air cooling.


Sign in / Sign up

Export Citation Format

Share Document