scholarly journals High-frequency electrical stimulation (HFES) Data Lean and Obese Zucker Rat Soleus Muscle: Regulation of p70S6kinase Associated Proteins

Data in Brief ◽  
2018 ◽  
Vol 16 ◽  
pp. 250-260 ◽  
Author(s):  
Kevin M. Rice ◽  
Anjaiah Katta ◽  
Nandini D.P.K. Manne ◽  
Ravikumar Arvapalli ◽  
Gautam K. Ginjupalli ◽  
...  
Data in Brief ◽  
2018 ◽  
Vol 16 ◽  
pp. 346-353 ◽  
Author(s):  
Gautam K. Ginjupalli ◽  
Kevin M. Rice ◽  
Anjaiah Katta ◽  
Nandini D.P.K. Manne ◽  
Ravikumar Arvapalli ◽  
...  

2007 ◽  
Vol 292 (5) ◽  
pp. R2001-R2011 ◽  
Author(s):  
K. T. Murphy ◽  
T. Clausen

We investigated the role of limitations in aerobic metabolism, glycolysis, and membrane excitability for development of high-frequency fatigue in isolated rat soleus muscle. Muscles mounted on force transducers were incubated in buffer bubbled with 5% CO2 and either 95% O2 (oxygenated) or 95% N2 (anoxic) and stimulated at 60 Hz continuously for 30–120 s or intermittently for 120 s. Cyanide (2 mM) and 2-deoxyglucose (10 mM) were used to inhibit aerobic metabolism and both glycolysis and aerobic metabolism, respectively. Excitability was reduced by carbacholine (10 μM), a nicotinic ACh receptor agonist, or ouabain (10 μM), an Na+-K+ pump inhibitor. Membrane excitability was measured by recording M waves. Intracellular Na+ and K+ contents and membrane potentials were measured by flame photometry and microelectrodes, respectively. During 120 s of continuous stimulation, oxygenated and anoxic muscles showed the same force loss. In oxygenated muscles, cyanide did not alter force loss for up to 90 s, whereas 2-deoxyglucose increased force loss (by 19–69%; P < 0.01) from 14 s of stimulation. In oxygenated muscles, 60 s of stimulation reduced force, M wave area, and amplitude by 70–90% ( P < 0.001). Carbacholine or ouabain increased intracellular Na+ content ( P < 0.001), induced a 7- to 8-mV membrane depolarization ( P < 0.001), and accelerated the rate of force loss (by 250–414%) during 30 s of stimulation ( P < 0.001). Similar effects were seen with intermittent stimulation. In conclusion, limitations in glycolysis and subsequently also in aerobic metabolism, as well as membrane excitability but not aerobic metabolism alone, appear to play an important role in the development of high-frequency fatigue in isolated rat soleus muscle.


2013 ◽  
Vol 27 (S1) ◽  
Author(s):  
Minoru Tanaka ◽  
Masayuki Tanaka ◽  
Miho Kanazashi ◽  
Hiroyo Kondo ◽  
Shinichiro Murakami ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document