scholarly journals Supporting data on prion protein translocation mechanism revealed by pulling force studies

Data in Brief ◽  
2020 ◽  
Vol 31 ◽  
pp. 105931 ◽  
Author(s):  
Theresa Kriegler ◽  
Sven Lang ◽  
Luigi Notari ◽  
Tara Hessa
2020 ◽  
Vol 432 (16) ◽  
pp. 4447-4465 ◽  
Author(s):  
Theresa Kriegler ◽  
Sven Lang ◽  
Luigi Notari ◽  
Tara Hessa

2018 ◽  
Author(s):  
M. A. Shahzad

We study the translocation of protein pulled under the action of time periodically external driving force through α-hemolysin nano-pore using Langevin molecular dynamical simulation. We observe that time depended external pulling force could enhance to more efficient translocation process as compared to protein translocation driven by constant external pulling force. We characterized the time depended force driven translocation mechanism by studying the gain in translocation as a function of frequency. We also present Golestanian plot which shows the modulated evolutions of number of translocation peptides, and of the probability distribution function with frequency as a results of the transmission of force oscillation to translocation dynamics.


2010 ◽  
Vol 188 (4) ◽  
pp. 515-526 ◽  
Author(s):  
Neena S. Rane ◽  
Oishee Chakrabarti ◽  
Lionel Feigenbaum ◽  
Ramanujan S. Hegde

Protein translocation into the endoplasmic reticulum is mediated by signal sequences that vary widely in primary structure. In vitro studies suggest that such signal sequence variations may correspond to subtly different functional properties. Whether comparable functional differences exist in vivo and are of sufficient magnitude to impact organism physiology is unknown. Here, we investigate this issue by analyzing in transgenic mice the impact of signal sequence efficiency for mammalian prion protein (PrP). We find that replacement of the average efficiency signal sequence of PrP with more efficient signals rescues mice from neurodegeneration caused by otherwise pathogenic PrP mutants in a downstream hydrophobic domain (HD). This effect is explained by the demonstration that efficient signal sequence function precludes generation of a cytosolically exposed, disease-causing transmembrane form of PrP mediated by the HD mutants. Thus, signal sequences are functionally nonequivalent in vivo, with intrinsic inefficiency of the native PrP signal being required for pathogenesis of a subset of disease-causing PrP mutations.


2004 ◽  
Vol 23 (23) ◽  
pp. 4550-4559 ◽  
Author(s):  
Neena S Rane ◽  
Jesse L Yonkovich ◽  
Ramanujan S Hegde

2020 ◽  
Author(s):  
Theresa Kriegler ◽  
Sven Lang ◽  
Luigi Notari ◽  
Tara Hessa

AbstractThe mammalian prion protein (PrP) engages with the ribosome-Sec61 translocation channel complex to generate different topological variants that are either physiological, or involved in neurodegenerative diseases. Here, we describe cotranslational folding and translocation mechanisms of PrP coupled to a Xbp1-based arrest peptide (AP) as folding sensor, to measure forces acting on PrP nascent chain. Our data reveal two main pulling events followed by a minor third one exerted on the nascent chains during their translocation.Using those force landscapes, we show that a specific sequence within an intrinsically disordered region, containing a polybasic and glycine-proline rich residues, modulates the second pulling event by interacting with TRAP complex. This work also delineates the sequence of events involved in generation of PrP toxic transmembrane topologies during its synthesis. Our results shed new insight into the folding of such topological complex protein, where marginal pulling by the signal sequence, together with the downstream sequence in the mature domain, primarily drives an overall inefficient translocation resulting in the nascent chain to adopt other topologies.


2018 ◽  
Author(s):  
Michiel J.M. Niesen ◽  
Annika Müller-Lucks ◽  
Rickard Hedman ◽  
Gunnar von Heijne ◽  
Thomas F. Miller

ABSTRACTDuring ribosomal translation, nascent polypeptide chains (NCs) undergo a variety of physical processes that determine their fate in the cell. Translation arrest peptide (AP) experiments are used to measure the external pulling forces that are exerted on the NC at different lengths during translation. To elucidate the molecular origins of these forces, a recently developed coarsegrained molecular dynamics (CGMD) is used to directly simulate the observed pulling-force profiles, thereby disentangling contributions from NC-translocon and NC-ribosome interactions, membrane partitioning, and electrostatic coupling to the membrane potential. This combination of experiment and theory reveals mechanistic features of Sec-facilitated membrane integration and protein translocation, including the interplay between transient interactions and conformational changes that occur during ribosomal translation to govern protein biogenesis.


2018 ◽  
Author(s):  
M. A. Shahzad

We study the unfold and translocation of knotted protein, YibK and YbeA, through α-hemolysin nano-pore via a coarse grained computational model. We observe that knot of protein unfold in advance before the translocation take place. We also characterized the translocation mechanism by studying the thermodynamical and kinetic properties of the process. In particular, we study the average of translocation time, and the translocation probability as a function of pulling force F acting in the channel. In limit of low pulling inward constant force acting along the axis of the pore, the YibK knotted protein takes longer average translocation time as compare to YbeA knotted protein.


2010 ◽  
Vol 191 (7) ◽  
pp. 1222-1223
Author(s):  
Caitlin Sedwick

Hegde uses prion protein as a model to explore how cells handle protein translocation and trafficking.


2010 ◽  
Vol 24 (3-4) ◽  
pp. 421-426 ◽  
Author(s):  
Fabio Cecconi ◽  
Umberto Marini Bettolo Marconi ◽  
Angelo Vulpiani

The progress of molecular manipulation technology has made it possible to conduct controlled experiments on translocation of polynucleotide and polypeptide chains across alpha-Hemolysin channels and solid-state nanopores. To study the translocation process we combined Molecular Dynamics at coarse-grained level and appropriate drift-diffusion Smoluchowski equations as an integrated statistical physics approach. In particular, we performed simulations of the passage across a cylindrical nanopore of Ubiquitin described by a coarse-grained native-centric model to investigate the influence of protein structural properties on translocation mechanism. The kinetic characterization of the process is achieved by studying the statistics of blockage times, the mobility and translocation probability as a function of the pulling forceFacting in the pore. We find that the transport dynamics displays a thresholdFcdepending on a free-energy barrier that Ubiquitin overcomes to translocate. Our simulations show this barrier to be the result from competition of the unfolding energy and the entropy associated to the confinement effects of the pore.


2020 ◽  
Author(s):  
Hisham Mazal ◽  
Marija Iljina ◽  
Inbal Riven ◽  
Gilad Haran

AbstractAAA+ ring-shaped machines, such as ClpB and Hsp104, mediate substrate translocation through their central channel by a set of pore loops. Recent structural studies suggested a universal hand-over-hand translocation mechanism, in which pore loops are moving rigidly in tandem with their corresponding subunits. However, functional and biophysical studies are in discord with this model. Here, we directly measure the real-time dynamics of the pore loops of ClpB and their response to substrate binding, using single-molecule FRET spectroscopy. All pore loops undergo large-amplitude fluctuations on the microsecond timescale, and change their conformation upon interaction with substrate proteins. Pore-loop conformational dynamics are modulated by nucleotides and strongly correlate with disaggregation activity. The differential behavior of the pore loops along the axial channel points to a fast Brownian-ratchet translocation mechanism, which likely acts in parallel to the much slower hand-over-hand process.


Sign in / Sign up

Export Citation Format

Share Document