transient interactions
Recently Published Documents


TOTAL DOCUMENTS

158
(FIVE YEARS 66)

H-INDEX

23
(FIVE YEARS 4)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Giuseppe Deganutti ◽  
Yi-Lynn Liang ◽  
Xin Zhang ◽  
Maryam Khoshouei ◽  
Lachlan Clydesdale ◽  
...  

AbstractThe glucagon-like peptide-1 receptor (GLP-1R) has broad physiological roles and is a validated target for treatment of metabolic disorders. Despite recent advances in GLP-1R structure elucidation, detailed mechanistic understanding of how different peptides generate profound differences in G protein-mediated signalling is still lacking. Here we combine cryo-electron microscopy, molecular dynamics simulations, receptor mutagenesis and pharmacological assays, to interrogate the mechanism and consequences of GLP-1R binding to four peptide agonists; glucagon-like peptide-1, oxyntomodulin, exendin-4 and exendin-P5. These data reveal that distinctions in peptide N-terminal interactions and dynamics with the GLP-1R transmembrane domain are reciprocally associated with differences in the allosteric coupling to G proteins. In particular, transient interactions with residues at the base of the binding cavity correlate with enhanced kinetics for G protein activation, providing a rationale for differences in G protein-mediated signalling efficacy from distinct agonists.


eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Shuya Kate Huang ◽  
Omar Almurad ◽  
Reizel J Pejana ◽  
Zachary A Morrison ◽  
Aditya Pandey ◽  
...  

Cholesterol is a major component of the cell membrane and commonly regulates membrane protein function. Here, we investigate how cholesterol modulates the conformational equilibria and signaling of the adenosine A2A receptor (A2AR) in reconstituted phospholipid nanodiscs. This model system conveniently excludes possible effects arising from cholesterol-induced phase separation or receptor oligomerization and focuses on the question of allostery. GTP hydrolysis assays show that cholesterol weakly enhances the basal signaling of A2AR while decreasing the agonist EC50. Fluorine nuclear magnetic resonance (19F NMR) spectroscopy shows that this enhancement arises from an increase in the receptor’s active state population and a G-protein-bound precoupled state. 19F NMR of fluorinated cholesterol analogs reveals transient interactions with A2AR, indicating a lack of high-affinity binding or direct allosteric modulation. The combined results suggest that the observed allosteric effects are largely indirect and originate from cholesterol-mediated changes in membrane properties, as shown by membrane fluidity measurements and high-pressure NMR.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Dylan Krajewski ◽  
Debayon Paul ◽  
Shujun Ge ◽  
Evan Jellison ◽  
Joel S. Pachter

Abstract Background Tight junctions (TJs) are membrane specializations characteristic of barrier-forming membranes, which function to seal the aqueous pathway between endothelial cells or epithelial cells and, thereby, obstruct intercellular solute and cellular movement. However, previous work from our laboratory found that claudin-5 (CLN-5), a TJ protein prominent at the blood–brain barrier (BBB), was also detected, ectopically, on leukocytes (CLN-5+) in the blood and central nervous system (CNS) of mice with experimental autoimmune encephalomyelitis (EAE), a neuroinflammatory, demyelinating disease that is a model for multiple sclerosis. CLN-5 was further shown to be transferred from endothelial cells to circulating leukocytes during disease, prompting consideration this action is coupled to leukocyte transendothelial migration (TEM) into the CNS by fostering transient interactions between corresponding leukocyte and endothelial junctional proteins at the BBB. Methods To begin clarifying the significance of CLN-5+ leukocytes, flow cytometry was used to determine their appearance in the blood and CNS during EAE. Results Flow cytometric analysis revealed CLN-5+ populations among CD4 and CD8 T cells, B cells, monocytes and neutrophils, and these appeared with varying kinetics and to different extents in both blood and CNS. CLN-5 levels on circulating T cells further correlated highly with activation state. And, the percentage of CLN-5+ cells among each of the subtypes analyzed was considerably higher in CNS tissue than in blood, consistent with the interpretation that CLN-5+ leukocytes gain preferred access to the CNS. Conclusion Several leukocyte subtypes variably acquire CLN-5 in blood before they enter the CNS, an event that may represent a novel mechanism to guide leukocytes to sites for paracellular diapedesis across the BBB.


Author(s):  
Dolores Piniella ◽  
Elena Martínez-Blanco ◽  
David Bartolomé-Martín ◽  
Ana B. Sanz-Martos ◽  
Francisco Zafra

AbstractDopamine (DA) transporters (DATs) are regulated by trafficking and modulatory processes that probably rely on stable and transient interactions with neighboring proteins and lipids. Using proximity-dependent biotin identification (BioID), we found novel potential partners for DAT, including several membrane proteins, such as the transmembrane chaperone 4F2hc, the proteolipid M6a and a potential membrane receptor for progesterone (PGRMC2). We also detected two cytoplasmic proteins: a component of the Cullin1-dependent ubiquitination machinery termed F-box/LRR-repeat protein 2 (FBXL2), and the enzyme inositol 5-phosphatase 2 (SHIP2). Immunoprecipitation (IP) and immunofluorescence studies confirmed either a physical association or a close spatial proximity between these proteins and DAT. M6a, SHIP2 and the Cullin1 system were shown to increase DAT activity in coexpression experiments, suggesting a functional role for their association. Deeper analysis revealed that M6a, which is enriched in neuronal protrusions (filopodia or dendritic spines), colocalized with DAT in these structures. In addition, the product of SHIP2 enzymatic activity (phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2]) was tightly associated with DAT, as shown by co-IP and by colocalization of mCherry-DAT with a specific biosensor for this phospholipid. PI(3,4)P2 strongly stimulated transport activity in electrophysiological recordings, and conversely, inhibition of SHIP2 reduced DA uptake in several experimental systems including striatal synaptosomes and the dopaminergic cell line SH-SY5Y. In summary, here we report several potential new partners for DAT and a novel regulatory lipid, which may represent new pharmacological targets for DAT, a pivotal protein in dopaminergic function of the brain.


2021 ◽  
Author(s):  
Kevin Goslin ◽  
Andrea Finocchio ◽  
Frank Wellmer

Proximity-labelling has emerged as a powerful tool for the detection of weak and transient interactions between proteins as well as the characterization of subcellular proteomes. One proximity labelling approach makes use of a promiscuous bacterial biotin ligase, termed BioID. Expression of BioID (or of its derivates TurboID and MiniTurbo) fused to a bait protein results in the biotinylation of proximal proteins. These biotinylated proteins can then be isolated by affinity purification using streptavidin-coated beads and identified by mass spectrometry. To facilitate the use of proximity-labelling in plants, we have generated a collection of constructs that can be used for the rapid cloning of TurboID and MiniTurbo fusion proteins using the Golden Gate cloning method. To allow for the use of the constructs in a range of experiments we have designed assembly modules that encode the biotin ligases fused to different linkers as well as different commonly used subcellular localization sequences. We demonstrate the functionality of these vectors through biotinylation assays in tobacco ( Nicotiana benthamiana ) plants .


2021 ◽  
pp. 101078
Author(s):  
Christophe Journeau ◽  
Monika Kiselová ◽  
Igor Pozniak ◽  
Petr Bezdička ◽  
Petr Svora ◽  
...  

2021 ◽  
Vol 134 (18) ◽  
Author(s):  
Oksana Gorshkova ◽  
Jessica Cappaï ◽  
Loriane Maillot ◽  
Arnauld Sergé

ABSTRACT Leukemic stem cells (LSCs) adhere to bone niches through adhesion molecules. These interactions, which are deeply reorganized in tumors, contribute to LSC resistance to chemotherapy and leukemia relapse. However, LSC adhesion mechanisms and potential therapeutic disruption using blocking antibodies remain largely unknown. Junctional adhesion molecule C (JAM-C, also known as JAM3) overexpression by LSCs correlates with increased leukemia severity, and thus constitutes a putative therapeutic target. Here, we took advantage of the ability of nanoscopy to detect single molecules with nanometric accuracy to characterize junctional adhesion molecule (JAM) dynamics at leuko-stromal contacts. Videonanoscopy trajectories were reconstructed using our dedicated multi-target tracing algorithm, pipelined with dual-color analyses (MTT2col). JAM-C expressed by LSCs engaged in transient interactions with JAM-B (also known as JAM2) expressed by stromal cells. JAM recruitment and colocalization at cell contacts were proportional to JAM-C level and reduced by a blocking anti-JAM-C antibody. MTT2col revealed, at single-molecule resolution, the ability of blocking antibodies to destabilize LSC binding to their niches, opening opportunities for disrupting LSC resistance mechanisms.


mSystems ◽  
2021 ◽  
Vol 6 (4) ◽  
Author(s):  
Nicholas J. Shikuma

Recent research on host-microbe interactions has focused on intimate symbioses. Yet transient interactions, such as the stimulation of animal metamorphosis by bacteria, can have significant impacts on each partner.


Sign in / Sign up

Export Citation Format

Share Document