scholarly journals Experimental data on radio frequency interference in microwave links using frequency scan measurements at 6 GHz, 7 GHz, and 8 GHz

Data in Brief ◽  
2021 ◽  
Vol 35 ◽  
pp. 106916
Author(s):  
Glory Uzuazobona Ughegbe ◽  
Michael Adedosu Adelabu ◽  
Agbotiname Lucky Imoize
Author(s):  
Michael Adedosu Adelabu ◽  
Agbotiname Lucky Imoize ◽  
Glory Uzuazobona Ughegbe

Radio frequency interference (RFI) constitutes a significant problem in achieving a good quality of service in radio links. Several techniques have been proposed to identify and mitigate RFI in wireless networks. However, most of these techniques are not generalized for all propagation environments due to their varying geographical features. The need for extensive frequency scan measurements on the links to identify the available channels, evaluate the performances of the links, and detect RFI in the channels becomes imperative. In this study, performance evaluation of frequency scan measurements from active microwave links comprising eighteen base stations is presented. The measurements equipment comprises a spectrum analyzer and a 0.6-meter antenna dish. The frequency scans were taken at 6GHz, 7GHz, and 8GHz with full azimuth coverage of the horizontal and vertical polarization. Measured data were processed to determine the available frequencies and RFI in the channels. The histogram and probability density function of the frequency scans were computed. The cumulative distribution functions were determined, and the statistical error characteristics of the frequency scans for the estimated normal distribution and the estimated fitness curve were derived. The short-time Fourier transform of the noisy signal was obtained, and the signal without noise was recovered using the inverse short-time Fourier transform. Analysis of the scanned signals before and after the noise removal is demonstrated. The denoised signals compare favorably with related results in the preliminary literature. Overall, the frequency scans would be highly useful in evaluating RFI measurements and spectrum planning.


Author(s):  
Rumadi Rumadi ◽  
◽  
Dicka Ariptian Rahayu ◽  
Nur Salma Yusuf Hasanah ◽  
Zhauhar Rainaldy Ardhana ◽  
...  

2020 ◽  
Vol 10 (19) ◽  
pp. 6885
Author(s):  
Sahar Ujan ◽  
Neda Navidi ◽  
Rene Jr Landry

Radio Frequency Interference (RFI) detection and characterization play a critical role in ensuring the security of all wireless communication networks. Advances in Machine Learning (ML) have led to the deployment of many robust techniques dealing with various types of RFI. To sidestep an unavoidable complicated feature extraction step in ML, we propose an efficient Deep Learning (DL)-based methodology using transfer learning to determine both the type of received signals and their modulation type. To this end, the scalogram of the received signals is used as the input of the pretrained convolutional neural networks (CNN), followed by a fully-connected classifier. This study considers a digital video stream as the signal of interest (SoI), transmitted in a real-time satellite-to-ground communication using DVB-S2 standards. To create the RFI dataset, the SoI is combined with three well-known jammers namely, continuous-wave interference (CWI), multi- continuous-wave interference (MCWI), and chirp interference (CI). This study investigated four well-known pretrained CNN architectures, namely, AlexNet, VGG-16, GoogleNet, and ResNet-18, for the feature extraction to recognize the visual RFI patterns directly from pixel images with minimal preprocessing. Moreover, the robustness of the proposed classifiers is evaluated by the data generated at different signal to noise ratios (SNR).


2019 ◽  
Vol 11 (7) ◽  
pp. 866 ◽  
Author(s):  
Imke Hans ◽  
Martin Burgdorf ◽  
Stefan A. Buehler

Understanding the causes of inter-satellite biases in climate data records from observations of the Earth is crucial for constructing a consistent time series of the essential climate variables. In this article, we analyse the strong scan- and time-dependent biases observed for the microwave humidity sounders on board the NOAA-16 and NOAA-19 satellites. We find compelling evidence that radio frequency interference (RFI) is the cause of the biases. We also devise a correction scheme for the raw count signals for the instruments to mitigate the effect of RFI. Our results show that the RFI-corrected, recalibrated data exhibit distinctly reduced biases and provide consistent time series.


Sign in / Sign up

Export Citation Format

Share Document