Colchicine affects cell motility, pattern formation and stalk cell differentiation in Dictyostelium by altering calcium signaling

2012 ◽  
Vol 83 (4) ◽  
pp. 185-199 ◽  
Author(s):  
Yekaterina Poloz ◽  
Danton H. O'Day
Microbiology ◽  
2021 ◽  
Author(s):  
Catherine J. Pears ◽  
Julian D. Gross

The social amoeba Dictyostelium discoideum is a versatile organism that is unusual in alternating between single-celled and multi-celled forms. It possesses highly-developed systems for cell motility and chemotaxis, phagocytosis, and developmental pattern formation. As a soil amoeba growing on microorganisms, it is exposed to many potential pathogens; it thus provides fruitful ways of investigating host-pathogen interactions and is emerging as an influential model for biomedical research.


1997 ◽  
Vol 184 (2) ◽  
pp. 296-302 ◽  
Author(s):  
Yohko Yamada ◽  
Koji Okamoto ◽  
Jeffrey Williams

FEBS Letters ◽  
1993 ◽  
Vol 322 (1) ◽  
pp. 73-75 ◽  
Author(s):  
Yuzuru Kubohara ◽  
Koji Okamoto ◽  
Yoshimasa Tanaka ◽  
Ken-ichi Asahi ◽  
Akira Sakurai ◽  
...  

1996 ◽  
Vol 109 (13) ◽  
pp. 3079-3087 ◽  
Author(s):  
M.J. Grimson ◽  
C.H. Haigler ◽  
R.L. Blanton

Prestalk cells of Dictyostelium discoideum contribute cellulose to two distinct structures, the stalk tube and the stalk cell wall, during culmination. This paper demonstrates by freeze fracture electron microscopy that two distinct types of intramembrane particle aggregates, which can be characterized as cellulose microfibril terminal complexes, occur in the plasma membranes of cells synthesizing these different forms of cellulose. The same terminal complexes were observed in situ in developing culminants and in vitro in monolayer cells induced to synthesize the two types of cellulose. We propose that cessation of cell motility is associated with a change in packing and intramembrane mobility of the particle aggregates, which cause a change in the nature of the cellulose synthesized. The terminal complexes are compared to those described in other organisms and related to the previous hypothesis of two modes of cellulose synthesis in Dictyostelium.


Development ◽  
1989 ◽  
Vol 105 (3) ◽  
pp. 569-574 ◽  
Author(s):  
M. Wang ◽  
P. Schaap

The differentiation-inducing factor, DIF, was induce stalk cell differentiation in Dictyostelium incubated as submerged monolayers. We investigated the regulates the differentiation of stalk cells in the was found that in migrating or submerged slugs DIF cell differentiation, which is most likely due to the antagonist. Cyclic AMP and ammonia were earlier antagonists in vitro. We show here that ammonia, but an antagonist for DIF-induced stalk cell can induce stalk cell differentiation when ammonia are enzymically depleted. However, depletion of cAMP increase the efficacy of DIF. We propose that the cell differentiation during early culmination may be drop in ammonia levels inside the organism.


2003 ◽  
Vol 23 (6) ◽  
pp. 2323-2332 ◽  
Author(s):  
York Rudhard ◽  
Matthias Kneussel ◽  
Mohammed A. Nassar ◽  
Georg F. Rast ◽  
Alexander J. Annala ◽  
...  

1981 ◽  
Vol 27 (9) ◽  
pp. 924-936 ◽  
Author(s):  
Gary D. Paterno ◽  
Danton H. O'Day

When amoebae of Polysphondylium pallidum WS320 are placed in nonnutrient buffer in roller tube culture they form spherical or ellipsoidal aggregates. At first the aggregates demonstrate a "loose" morphology but by 12 h, with the formation of a cellulose-containing, peripheral sheath, they become "tight" aggregates. At this time stalk differentiation begins. Using various methods for the resolution of prespore (ultrastructure, spore antigen immunofluorescence, periodic acid – Schiff staining) and prestalk (ultrastructure, alkaline phosphatase histochemistry, neutral red staining, Calcofluor fluorescence) cell localization, the pattern of cell differentiation in submerged aggregates was shown to be essentially identical to that of normal pseudoplasmodia. Furthermore, using a cAMP bioassay it was revealed that the submerged aggregates, while devoid of a morphological tip, do possess a biochemical tip which is correlated with sites of neutral red staining and stalk cell differentiation. As a result of these studies, an earlier argument that the tip of the pseudoplasmodium is not essential for the establishment of pattern or in the "organization" of cellular differentiation during slime mould development is contradicted.


1988 ◽  
Vol 8 ◽  
pp. S27-S41 ◽  
Author(s):  
Colin J. Barnstable ◽  
Andrew S. Blum ◽  
Stephen H. Devoto ◽  
David Hicks ◽  
Maria A. Morabito ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document