scholarly journals A basic elementary extension of the Duchet–Meyniel theorem

2010 ◽  
Vol 310 (3) ◽  
pp. 480-488 ◽  
Author(s):  
Anders Sune Pedersen ◽  
Bjarne Toft
Keyword(s):  
1973 ◽  
Vol 38 (3) ◽  
pp. 460-470 ◽  
Author(s):  
John Gregory

Let A be a countable admissible set (as defined in [1], [3]). The language LA consists of all infinitary finite-quantifier formulas (identified with sets, as in [1]) that are elements of A. Notationally, LA = A ∩ Lω1ω. Then LA is a countable subset of Lω1ω, the language of all infinitary finite-quantifier formulas with all conjunctions countable. The set is the set of Lω1ω sentences defined in 2.2 below. The following theorem characterizes those A-Σ1 sets Φ of LA sentences that have uncountable models.Main Theorem (3.1.). If Φ is an A-Σ1set of LA sentences, then the following are equivalent:(a) Φ has an uncountable model,(b) Φ has a model with a proper LA-elementary extension,(c) for every , ⋀Φ → C is not valid.This theorem was announced in [2] and is proved in §§3, 4, 5. Makkai's earlier [4, Theorem 1] implies that, if Φ determines countable structure up to Lω1ω-elementary equivalence, then (a) is equivalent to (c′) for all , ⋀Φ → C is not valid.The requirement in 3.1 that Φ is A-Σ1 is essential when the set ω of all natural numbers is an element of A. For by the example of [2], then there is a set Φ LA sentences such that (b) holds and (a) fails; it is easier to show that, if ω ϵ A, there is a set Φ of LA sentences such that (c) holds and (b) fails.


1960 ◽  
Vol 25 (1) ◽  
pp. 1-26 ◽  
Author(s):  
H. Jerome Keisler

IntroductionWe shall prove the following theorem, which gives a necessary and sufficient condition for an elementary class to be characterized by a set of sentences having a prescribed number of alternations of quantifiers. A finite sequence of relational systems is said to be a sandwich of order n if each is an elementary extension of (i ≦ n—2), and each is an extension of (i ≦ n—2). If K is an elementary class, then the statements (i) and (ii) are equivalent for each fixed natural number n.


1996 ◽  
Vol 61 (2) ◽  
pp. 586-607
Author(s):  
Vladimir Kanovei

AbstractWe prove that a necessary and sufficient condition for a countable set of sets of integers to be equal to the algebra of all sets of integers definable in a nonstandard elementary extension of ω by a formula of the PA language which may include the standardness predicate but does not contain nonstandard parameters, is as follows: is closed under arithmetical definability and contains 0(ω) the set of all (Gödel numbers of) true arithmetical sentences.Some results related to definability of sets of integers in elementary extensions of ω are included.


1991 ◽  
Vol 56 (4) ◽  
pp. 1184-1194 ◽  
Author(s):  
Steven Buechler

AbstractLet D be a strongly minimal set in the language L, and D′ ⊃ D an elementary extension with infinite dimension over D. Add to L a unary predicate symbol D and let T′ be the theory of the structure (D′, D), where D interprets the predicate D. It is known that T′ is ω-stable. We proveTheorem A. If D is not locally modular, then T′ has Morley rank ω.We say that a strongly minimal set D is pseudoprojective if it is nontrivial and there is a k < ω such that, for all a, b ∈ D and closed X ⊂ D, a ∈ cl(Xb) ⇒ there is a Y ⊂ X with a ∈ cl(Yb) and ∣Y∣ ≤ k. Using Theorem A, we proveTheorem B. If a strongly minimal set D is pseudoprojective, then D is locally projective.The following result of Hrushovski's (proved in §4) plays a part in the proof of Theorem B.Theorem C. Suppose that D is strongly minimal, and there is some proper elementary extension D1 of D such that the theory of the pair (D1, D) is ω1-categorical. Then D is locally modular.


1975 ◽  
Vol 40 (3) ◽  
pp. 317-320 ◽  
Author(s):  
Julia F. Knight

In [4] it is shown that if the structure omits a type Σ, and Σ is complete with respect to Th(), then there is a proper elementary extension of which omits Σ. This result is extended in the present paper. It is shown that Th() has models omitting Σ in all infinite powers.A type is a countable set of formulas with just the variable ν occurring free. A structure is said to omit the type Σ if no element of satisfies all of the formulas of Σ. A type Σ, in the same language as a theory T, is said to be complete with respect to T if (1) T ∪ Σ is consistent, and (2) for every formula φ(ν) of the language of T (with just ν free), either φ or ¬φ is in Σ.The proof of the result of this paper resembles Morley's proof [5] that the Hanf number for omitting types is . It is shown that there is a model of Th() which omits Σ and contains an infinite set of indiscernibles. Where Morley used the Erdös-Rado generalization of Ramsey's theorem, a definable version of the ordinary Ramsey's theorem is used here.The “omitting types” version of the ω-completeness theorem ([1], [3], [6]) is used, as it was in Morley's proof and in [4]. In [4], satisfaction of the hypotheses of the ω-completeness theorem followed from the fact that, in , any infinite, definable set can be split into two infinite, definable sets.


1994 ◽  
Vol 59 (4) ◽  
pp. 1400-1409 ◽  
Author(s):  
Anand Pillay

AbstractLet T be a complete O-minimal theory in a language L. We first give an elementary proof of the result (due to Marker and Steinhorn) that all types over Dedekind complete models of T are definable. Let L* be L together with a unary predicate P. Let T* be the L*-theory of all pairs (N, M), where M is a Dedekind complete model of T and N is an ⅼMⅼ+-saturated elementary extension of N (and M is the interpretation of P). Using the definability of types result, we show that T* is complete and we give a simple set of axioms for T*. We also show that for every L*-formula ϕ(x) there is an L-formula ψ(x) such that T* ⊢ (∀x)(P(x) → (ϕ(x) ↔ ψ(x)). This yields the following result:Let M be a Dedekind complete model of T. Let ϕ(x, y) be an L-formula where l(y) – k. Let X = {X ⊂ Mk: for some a in an elementary extension N of M, X = ϕ(a, y)N ∩ Mk}. Then there is a formula ψ(y, z) of L such that X = {ψ(y, b)M: b in M}.


1998 ◽  
Vol 63 (3) ◽  
pp. 1116-1136 ◽  
Author(s):  
Andrés Villaveces

AbstractLarge cardinals arising from the existence of arbitrarily long end elementary extension chains over models of set theory are studied here. In particular, we show that the large cardinals obtained in this fashion (‘unfoldable cardinals’) lie in the boundary of the propositions consistent with ‘V = L’ and the existence of 0#. We also provide an ‘embedding characterisation’ of the unfoldable cardinals and study their preservation and destruction by various forcing constructions.


1977 ◽  
Vol 42 (3) ◽  
pp. 341-348 ◽  
Author(s):  
Małgorzata Dubiel

Let L be a countable first-order language and L(Q) be obtained by adjoining an additional quantifier Q. Q is a generalization of the quantifier “there exists uncountably many x such that…” which was introduced by Mostowski in [4]. The logic of this latter quantifier was formalized by Keisler in [2]. Krivine and McAloon [3] considered quantifiers satisfying some but not all of Keisler's axioms. They called a formula φ(x) countable-like iffor every ψ. In Keisler's logic, φ(x) being countable-like is the same as ℳ⊨┐Qxφ(x). The main theorem of [3] states that any countable model ℳ of L[Q] has an elementary extension N, which preserves countable-like formulas but no others, such that the only sets definable in both N and M are those defined by formulas countable-like in M. Suppose C(x) in M is linearly ordered and noncountable-like but with countable-like proper segments. Then in N, C will have new elements greater than all “old” elements but no least new element — otherwise it will be definable in both models. The natural question is whether it is possible to use generalized quantifiers to extend models elementarily in such a way that a noncountable-like formula C will have a minimal new element. There are models and formulas for which it is not possible. For example let M be obtained from a minimal transitive model of ZFC by letting Qxφ(x) mean “there are arbitrarily large ordinals satisfying φ”.


2010 ◽  
Vol 75 (4) ◽  
pp. 1366-1382
Author(s):  
James H. Schmerl

AbstractBounded lattices (that is lattices that are both lower bounded and upper bounded) form a large class of lattices that include all distributive lattices, many nondistributive finite lattices such as the pentagon lattice N5. and all lattices in any variety generated by a finite bounded lattice. Extending a theorem of Paris for distributive lattices, we prove that if L is an ℵ0-algebraic bounded lattice, then every countable nonstandard model of Peano Arithmetic has a cofinal elementary extension such that the interstructure lattice Lt(/) is isomorphic to L.


Sign in / Sign up

Export Citation Format

Share Document