Spatial organization of food webs along habitat gradients at deep-sea hydrothermal vents on Axial Volcano, Northeast Pacific

2006 ◽  
Vol 53 (4) ◽  
pp. 726-739 ◽  
Author(s):  
Christian Levesque ◽  
S. Kim Juniper ◽  
Helene Limén
2003 ◽  
Vol 69 (2) ◽  
pp. 960-970 ◽  
Author(s):  
Mausmi P. Mehta ◽  
David A. Butterfield ◽  
John A. Baross

ABSTRACT The subseafloor microbial habitat associated with typical unsedimented mid-ocean-ridge hydrothermal vent ecosystems may be limited by the availability of fixed nitrogen, inferred by the low ammonium and nitrate concentrations measured in diffuse hydrothermal fluid. Dissolved N2 gas, the largest reservoir of nitrogen in the ocean, is abundant in deep-sea and hydrothermal vent fluid. In order to test the hypothesis that biological nitrogen fixation plays an important role in nitrogen cycling in the subseafloor associated with unsedimented hydrothermal vents, degenerate PCR primers were designed to amplify the nitrogenase iron protein gene nifH from hydrothermal vent fluid. A total of 120 nifH sequences were obtained from four samples: a nitrogen-poor diffuse vent named marker 33 on Axial Volcano, sampled twice over a period of 1 year as its temperature decreased; a nitrogen-rich diffuse vent near Puffer on Endeavour Segment; and deep seawater with no detectable hydrothermal plume signal. Subseafloor nifH genes from marker 33 and Puffer are related to anaerobic clostridia and sulfate reducers. Other nifH genes unique to the vent samples include proteobacteria and divergent Archaea. All of the nifH genes from the deep-seawater sample are most closely related to the thermophilic, anaerobic archaeon Methanococcus thermolithotrophicus (77 to 83% amino acid similarity). These results provide the first genetic evidence of potential nitrogen fixers in hydrothermal vent environments and indicate that at least two sources contribute to the diverse assemblage of nifH genes detected in hydrothermal vent fluid: nifH genes from an anaerobic, hot subseafloor and nifH genes from cold, oxygenated deep seawater.


2008 ◽  
Vol 359 ◽  
pp. 161-170 ◽  
Author(s):  
H Limén ◽  
CJ Stevens ◽  
Z Bourass ◽  
SK Juniper

2021 ◽  
Vol 118 (29) ◽  
pp. e2102674118
Author(s):  
Sarah K. Hu ◽  
Erica L. Herrera ◽  
Amy R. Smith ◽  
Maria G. Pachiadaki ◽  
Virginia P. Edgcomb ◽  
...  

Microbial eukaryotes (or protists) in marine ecosystems are a link between primary producers and all higher trophic levels, and the rate at which heterotrophic protistan grazers consume microbial prey is a key mechanism for carbon transport and recycling in microbial food webs. At deep-sea hydrothermal vents, chemosynthetic bacteria and archaea form the base of a food web that functions in the absence of sunlight, but the role of protistan grazers in these highly productive ecosystems is largely unexplored. Here, we pair grazing experiments with a molecular survey to quantify protistan grazing and to characterize the composition of vent-associated protists in low-temperature diffuse venting fluids from Gorda Ridge in the northeast Pacific Ocean. Results reveal protists exert higher predation pressure at vents compared to the surrounding deep seawater environment and may account for consuming 28 to 62% of the daily stock of prokaryotic biomass within discharging hydrothermal vent fluids. The vent-associated protistan community was more species rich relative to the background deep sea, and patterns in the distribution and co-occurrence of vent microbes provide additional insights into potential predator–prey interactions. Ciliates, followed by dinoflagellates, Syndiniales, rhizaria, and stramenopiles, dominated the vent protistan community and included bacterivorous species, species known to host symbionts, and parasites. Our findings provide an estimate of protistan grazing pressure within hydrothermal vent food webs, highlighting the important role that diverse protistan communities play in deep-sea carbon cycling.


1987 ◽  
Vol 65 (10) ◽  
pp. 2443-2449 ◽  
Author(s):  
Verena Tunnicliffe ◽  
R. Gordon Jensen

Over 200 individuals of the majid crab Macroregonia macrochira Sakai, 1978 were examined on submersible and towed camera photographs from the Juan de Fuca and Explorer ridges. The crab is found at bathyal depths and shows a preference for hard substrata. Its attraction to the food source at hydrothermal vents is reflected in the high population concentrations around vent sites of the northeast Pacific. Mature males, distinguished by their large chelipeds, tend to be widely dispersed while the female–juvenile group clusters in and around vents. Stomachs of captured specimens contain remains of vent animals, confirming, along with submersible observations, that this crab is a major predator of animals at these vents. Other aspects of M. macrochira biology suggest that the sexes are separable on the basis of carapace aspect ratio, that polygamy is not apparent, and that planktotrophic larvae are released. The crab's ability to range both in and away from vents makes it an excellent indicator of the proximity of hydrothermal activity. In addition, it represents a mechanism for transferring the rich production of chemosynthetic activity to the oligotrophic deep-sea environment.


2017 ◽  
Vol 14 (12) ◽  
pp. 2955-2977 ◽  
Author(s):  
Daphne Cuvelier ◽  
Pierre Legendre ◽  
Agathe Laës-Huon ◽  
Pierre-Marie Sarradin ◽  
Jozée Sarrazin

Abstract. During 2011, two deep-sea observatories focusing on hydrothermal vent ecology were up and running in the Atlantic (Eiffel Tower, Lucky Strike vent field) and the Northeast Pacific Ocean (NEP) (Grotto, Main Endeavour Field). Both ecological modules recorded imagery and environmental variables jointly for a time span of 23 days (7–30 October 2011) and environmental variables for up to 9 months (October 2011–June 2012). Community dynamics were assessed based on imagery analysis and rhythms in temporal variation for both fauna and environment were revealed. Tidal rhythms were found to be at play in the two settings and were most visible in temperature and tubeworm appearances (at NEP). A  ∼  6 h lag in tidal rhythm occurrence was observed between Pacific and Atlantic hydrothermal vents, which corresponds to the geographical distance and time delay between the two sites.


Sign in / Sign up

Export Citation Format

Share Document