scholarly journals Real-time prediction of projectile penetration to laminates by training machine learning models with finite element solver as the trainer

2020 ◽  
Author(s):  
Pushkar Wadagbalkar ◽  
G.R. Liu
2020 ◽  
Vol 143 ◽  
pp. 113083 ◽  
Author(s):  
Oscar J. Pellicer-Valero ◽  
María José Rupérez ◽  
Sandra Martínez-Sanchis ◽  
José D. Martín-Guerrero

2021 ◽  
Vol 12 (02) ◽  
pp. 372-382
Author(s):  
Christine Xia Wu ◽  
Ernest Suresh ◽  
Francis Wei Loong Phng ◽  
Kai Pik Tai ◽  
Janthorn Pakdeethai ◽  
...  

Abstract Objective To develop a risk score for the real-time prediction of readmissions for patients using patient specific information captured in electronic medical records (EMR) in Singapore to enable the prospective identification of high-risk patients for enrolment in timely interventions. Methods Machine-learning models were built to estimate the probability of a patient being readmitted within 30 days of discharge. EMR of 25,472 patients discharged from the medicine department at Ng Teng Fong General Hospital between January 2016 and December 2016 were extracted retrospectively for training and internal validation of the models. We developed and implemented a real-time 30-day readmission risk score generation in the EMR system, which enabled the flagging of high-risk patients to care providers in the hospital. Based on the daily high-risk patient list, the various interfaces and flow sheets in the EMR were configured according to the information needs of the various stakeholders such as the inpatient medical, nursing, case management, emergency department, and postdischarge care teams. Results Overall, the machine-learning models achieved good performance with area under the receiver operating characteristic ranging from 0.77 to 0.81. The models were used to proactively identify and attend to patients who are at risk of readmission before an actual readmission occurs. This approach successfully reduced the 30-day readmission rate for patients admitted to the medicine department from 11.7% in 2017 to 10.1% in 2019 (p < 0.01) after risk adjustment. Conclusion Machine-learning models can be deployed in the EMR system to provide real-time forecasts for a more comprehensive outlook in the aspects of decision-making and care provision.


APL Materials ◽  
2016 ◽  
Vol 4 (5) ◽  
pp. 053213 ◽  
Author(s):  
Michael W. Gaultois ◽  
Anton O. Oliynyk ◽  
Arthur Mar ◽  
Taylor D. Sparks ◽  
Gregory J. Mulholland ◽  
...  

Author(s):  
Ishita Chakraborty

Abstract Centralizer subs are run in conjunction with the casing strings in the oil/gas wells to ensure that the casing is centralized while it is installed down hole. Centralizer subs are fabricated of stronger material than the casing strings and designed such that it can sustain a higher collapse pressure than the attached tubing string. A typical centralizer sub is a tube with some complex geometrical features, so the collapse pressure of a centralizer sub can only be estimated by conducting a finite element analysis or subjecting it to a collapse pressure test. Both the options are time consuming and expensive. In this work, a machine learning based regression model is used to derive a parametric equation for calculating the collapse pressure of a centralizer sub. The data needed to train and cross validate the regression model is obtained from finite element analysis (FEA). This machine learning based equation provides a closer estimate of the collapse pressure of the centralizer subs to the results obtained from the FEA than the existing collapse prediction equations from API RP 1111. This machine learning based estimation of collapse pressure will help in correctly predicting the collapse rating of the centralizer sub without performing FEA or testing for each individual subs. This approach of building machine learning models from data generated from FEA can be used for analysis of other equipment as well. With the availability of past data collected/generated through years, the recent advances in machine learning can be used to save time and resources.


Sign in / Sign up

Export Citation Format

Share Document