scholarly journals Sign and magnitude scaling properties of heart rate fluctuations following vagus nerve stimulation in a patient with drug-resistant epilepsy

2018 ◽  
Vol 10 ◽  
pp. 78-81 ◽  
Author(s):  
Eduardo Gutiérrez-Maldonado ◽  
Claudia Ivette Ledesma-Ramírez ◽  
Adriana Cristina Pliego-Carrillo ◽  
José Javier Reyes-Lagos
Epilepsia ◽  
2017 ◽  
Vol 58 (6) ◽  
pp. 1015-1022 ◽  
Author(s):  
Hongyun Liu ◽  
Zhao Yang ◽  
Lei Huang ◽  
Wei Qu ◽  
Hongwei Hao ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
pp. 223-232 ◽  
Author(s):  
Victor Constantinescu ◽  
Daniela Matei ◽  
Irina Constantinescu ◽  
Dan Iulian Cuciureanu

Abstract Background Vagus nerve stimulation (VNS) exerts a cortical modulating effect through its diffuse projections, especially involving cerebral structures related to autonomic regulation. The influence of VNS on cardiovascular autonomic function in drug-resistant epilepsy patients is still debated. We aimed to evaluate the impact of VNS on cardiovascular autonomic function in drug-resistant epilepsy patients, after three months of neurostimulation, using the heart rate variability (HRV) analysis. Methodology Multiple Trigonometric Regressive Spectral analysis enables a precise assessment of the autonomic control on the heart rate. We evaluated time and frequency-domain HRV parameters in resting condition and during sympathetic and parasympathetic activation tests in five epilepsy patients who underwent VNS procedure. Results We found appropriate cardiac autonomic responses to sympathetic and parasympathetic activation tests, described by RMSSD, pNN50, HF and LF/HF dynamics after three months of VNS. ON period of the neurostimulation may generate a transient vagal activation reflected on heart rate and RMSSD values, as observed in one of our cases. Conclusion VNS therapy in epilepsy patients seems not to disrupt the cardiac autonomic function. HRV represents a useful tool in evaluating autonomic activity. More extensive studies are needed to further explore cardiac autonomic response after neurostimulation.


2019 ◽  
Vol 20 (3) ◽  
pp. 189-198 ◽  
Author(s):  
Laura Pérez-Carbonell ◽  
Howard Faulkner ◽  
Sean Higgins ◽  
Michalis Koutroumanidis ◽  
Guy Leschziner

Vagus nerve stimulation (VNS) is a neuromodulatory therapeutic option for drug-resistant epilepsy. In randomised controlled trials, VNS implantation has resulted in over 50% reduction in seizure frequency in 26%–40% of patients within 1 year. Long-term uncontrolled studies suggest better responses to VNS over time; however, the assessment of other potential predictive factors has led to contradictory results. Although initially designed for managing focal seizures, its use has been extended to other forms of drug-resistant epilepsy. In this review, we discuss the evidence supporting the use of VNS, its impact on seizure frequency and quality of life, and common adverse effects of this therapy. We also include practical guidance for the approach to and the management of patients with VNS in situ.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xi Fang ◽  
Hong-Yun Liu ◽  
Zhi-Yan Wang ◽  
Zhao Yang ◽  
Tung-Yang Cheng ◽  
...  

Objective: Vagus nerve stimulation (VNS) is an adjunctive and well-established treatment for patients with drug-resistant epilepsy (DRE). However, it is still difficult to identify patients who may benefit from VNS surgery. Our study aims to propose a VNS outcome prediction model based on machine learning with multidimensional preoperative heart rate variability (HRV) indices.Methods: The preoperative electrocardiography (ECG) of 59 patients with DRE and of 50 healthy controls were analyzed. Responders were defined as having at least 50% average monthly seizure frequency reduction at 1-year follow-up. Time domain, frequency domain, and non-linear indices of HRV were compared between 30 responders and 29 non-responders in awake and sleep states, respectively. For feature selection, univariate filter and recursive feature elimination (RFE) algorithms were performed to assess the importance of different HRV indices to VNS outcome prediction and improve the classification performance. Random forest (RF) was used to train the classifier, and leave-one-out (LOO) cross-validation was performed to evaluate the prediction model.Results: Among 52 HRV indices, 49 showed significant differences between DRE patients and healthy controls. In sleep state, 35 HRV indices of responders were significantly higher than those of non-responders, while 16 of them showed the same differences in awake state. Low-frequency power (LF) ranked first in the importance ranking results by univariate filter and RFE methods, respectively. With HRV indices in sleep state, our model achieved 74.6% accuracy, 80% precision, 70.6% recall, and 75% F1 for VNS outcome prediction, which was better than the optimal performance in awake state (65.3% accuracy, 66.4% precision, 70.5% recall, and 68.4% F1).Significance: With the ECG during sleep state and machine learning techniques, the statistical model based on preoperative HRV could achieve a better performance of VNS outcome prediction and, therefore, help patients who are not suitable for VNS to avoid the high cost of surgery and possible risks of long-term stimulation.


Sign in / Sign up

Export Citation Format

Share Document