scholarly journals Nitric Oxide-induced Activation of the Type 1 Ryanodine Receptor Is Critical for Epileptic Seizure-induced Neuronal Cell Death

EBioMedicine ◽  
2016 ◽  
Vol 11 ◽  
pp. 253-261 ◽  
Author(s):  
Yoshinori Mikami ◽  
Kazunori Kanemaru ◽  
Yohei Okubo ◽  
Takuya Nakaune ◽  
Junji Suzuki ◽  
...  
2005 ◽  
pp. 146-156
Author(s):  
Mika Shimoji ◽  
Valina L. Dawson ◽  
Ted M. Dawson

1996 ◽  
Vol 25 ◽  
pp. S85
Author(s):  
Kunio Koshimura ◽  
Junko Tanaka ◽  
Yoshio Murakami ◽  
Yuzuru Kato

2000 ◽  
Vol 278 (6) ◽  
pp. C1099-C1107 ◽  
Author(s):  
Andrew J. Gow ◽  
Qiping Chen ◽  
Madhura Gole ◽  
Marios Themistocleous ◽  
Virginia M.-Y. Lee ◽  
...  

To better understand the mechanism(s) underlying nitric oxide (⋅ NO)-mediated toxicity, in the presence and absence of concomitant oxidant exposure, postmitotic terminally differentiated NT2N cells, which are incapable of producing ⋅ NO, were exposed to PAPA-NONOate (PAPA/NO) and 3-morpholinosydnonimine (SIN-1). Exposure to SIN-1, which generated peroxynitrite in the range of 25–750 nM/min, produced a concentration- and time-dependent delayed cell death. In contrast, a critical threshold concentration (>440 nM/min) was required for ⋅ NO to produce significant cell injury. Examination of cells by electron microscopy shows a largely necrotic injury after peroxynitrite exposure but mainly apoptotic-like morphology after ⋅ NO exposure. Cellular levels of reduced thiols correlated with cell death, and pretreatment with N-acetylcysteine (NAC) fully protected from cell death in either PAPA/NO or SIN-1 exposure. NAC given within the first 3 h posttreatment further delayed cell death and increased the intracellular thiol level in SIN-1 but not ⋅ NO-exposed cells. Cell injury from ⋅ NO was independent of cGMP, caspases, and superoxide or peroxynitrite formation. Overall, exposure of non-⋅ NO-producing cells to ⋅ NO or peroxynitrite results in delayed cell death, which, although occurring by different mechanisms, appears to be mediated by the loss of intracellular redox balance.


2016 ◽  
Vol 147 (4) ◽  
pp. 200-205 ◽  
Author(s):  
Toshiko Yamazawa ◽  
Sho Kakizawa

Sign in / Sign up

Export Citation Format

Share Document