primary neuron
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 15)

H-INDEX

23
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Yu-Ting Liew ◽  
Andre Voelzmann ◽  
Liliana M. Pinho-Correia ◽  
Thomas Murphy ◽  
Haydn Tortoishell ◽  
...  

Axons are the slender, up to meter-long projections of neurons that form the biological cables wiring our bodies. Most of these delicate structures must survive for an organism's lifetime, meaning up to a century in humans. Axon maintenance requires life-sustaining motor protein-driven transport distributing materials and organelles from the distant cell body. It seems logic that impairing this transport causes systemic deprivation linking to axon degeneration. But the key steps underlying these pathological processes are little understood. To investigate mechanisms triggered by motor protein aberrations, we studied more than 40 loss- and gain-of-function conditions of motor proteins, cargo linkers or further genes involved in related processes of cellular physiology. We used one standardised Drosophila primary neuron system and focussed on the organisation of axonal microtubule bundles as an easy to assess readout reflecting axon integrity. We found that bundle disintegration into curled microtubules is caused by the losses of Dynein heavy chain and the Kif1 and Kif5 homologues Unc-104 and Kinesin heavy chain (Khc). Using point mutations of Khc and functional loss of its linker proteins, we studied which of Khc's sub-functions might link to microtubule curling. One cause was emergence of harmful reactive oxygen species through loss of Milton/Miro-mediated mitochondrial transport. In contrast, loss of the Kinesin light chain linker caused microtubule curling through an entirely different mechanism appearing to involve increased mechanical challenge to microtubule bundles through de-inhibition of Khc. The wider implications of our findings for the understanding of axon maintenance and pathology are discussed.


2021 ◽  
Author(s):  
The Michael J Fox Foundation Pff Standardization Consortium

This is a consensus protocol developed through discussions with Laura Volpicelli-Daley, Caryl Sortwell, Kelvin Luk, Lindsey Gottler, and Virginia Lee. This protocol is intended for research purposes only, using specially-formulated monomeric alpha-synuclein protein available for purchase at Proteos, Inc as the result of efforts by The Michael J. Fox Foundation (MJFF). Each batch of the “Alpha-Synuclein Monomer Protein for Making Pre- Formed Fibrils” has undergone internal purification and quality control at Proteos in addition to external validation to confirm successful generation of pathogenic aSyn PFFs. See Reference section for methods and results from application of alpha-synuclein pre-formed fibrils (aSyn PFFs) in primary neuron cultures in vitro or in mice in vivo. This protocol is referenced in the Polinski et al 2018 paper entitled "Best Practices for Generating and Using Alpha-Synuclein Pre-Formed Fibrils to Model Parkinson's Disease in Rodents" (doi: 10.3233/JPD-171248).


2021 ◽  
Author(s):  
The Michael J Fox Foundation Pff Standardization Consortium

This is a consensus protocol developed through discussions with Laura Volpicelli-Daley, Caryl Sortwell, Kelvin Luk, Lindsey Gottler, and Virginia Lee. This protocol is intended for research purposes only, using specially-formulated monomeric alpha-synuclein protein available for purchase at Proteos, Inc as the result of efforts by The Michael J. Fox Foundation (MJFF). Each batch of the “Alpha-Synuclein Monomer Protein for Making Pre- Formed Fibrils” has undergone internal purification and quality control at Proteos in addition to external validation to confirm successful generation of pathogenic aSyn PFFs. See Reference section for methods and results from application of alpha-synuclein pre-formed fibrils (aSyn PFFs) in primary neuron cultures in vitro or in mice in vivo. This protocol is referenced in the Polinski et al 2018 paper entitled "Best Practices for Generating and Using Alpha-Synuclein Pre-Formed Fibrils to Model Parkinson's Disease in Rodents" (doi: 10.3233/JPD-171248).


2021 ◽  
Author(s):  
The Michael J Fox Foundation Pff Standardization Consortium

This is a consensus protocol developed through discussions with Laura Volpicelli-Daley, Caryl Sortwell, Kelvin Luk, Lindsey Gottler, and Virginia Lee. This protocol is intended for research purposes only, using specially-formulated monomeric alpha-synuclein protein available for purchase at Proteos, Inc as the result of efforts by The Michael J. Fox Foundation (MJFF). Each batch of the “Alpha-Synuclein Monomer Protein for Making Pre- Formed Fibrils” has undergone internal purification and quality control at Proteos in addition to external validation to confirm successful generation of pathogenic aSyn PFFs. See Reference section for methods and results from application of alpha-synuclein pre-formed fibrils (aSyn PFFs) in primary neuron cultures in vitro or in mice in vivo. This protocol is referenced in the Polinski et al 2018 paper entitled "Best Practices for Generating and Using Alpha-Synuclein Pre-Formed Fibrils to Model Parkinson's Disease in Rodents" (doi: 10.3233/JPD-171248).


2021 ◽  
Vol 118 (25) ◽  
pp. e2025299118
Author(s):  
Yanjun Liu ◽  
Ruxin Zeng ◽  
Ruixuan Wang ◽  
Yicheng Weng ◽  
Ruixiang Wang ◽  
...  

Proteome-wide profiling of protein phosphorylation has been widely used to reveal the underlying mechanism of diverse cellular signaling events. Yet, characterizing subcellular phosphoproteome with high spatial–temporal resolution has remained challenging. Herein, we developed a subcellular-specific uncaging-assisted biotinylation and mapping of phosphoproteome (SubMAPP) strategy to monitor the phosphorylation dynamics of subcellular proteome in living cells and animals. Our method capitalizes on the genetically encoded bioorthogonal decaging strategy, which enables the rapid activation of subcellular localized proximity labeling biotin ligase through either light illumination or small-molecule triggers. By further adopting an integrated orthogonal pull-down strategy with quantitative mass spectrometry, SubMAPP allowed for the investigation of subcellular phosphoproteome dynamics, revealing the altered phosphorylation patterns of endoplasmic reticulum (ER) luminal proteins under ER stress. Finally, we further expanded the scope of the SubMAPP strategy to primary neuron culture and living mice.


2021 ◽  
Vol 22 (6) ◽  
pp. 3213
Author(s):  
Ami Oguro ◽  
Kenta Fujita ◽  
Yasuhiro Ishihara ◽  
Megumi Yamamoto ◽  
Takeshi Yamazaki

The consumption of fish now involves a risk of methylmercury (MeHg) exposure but also provides the benefit of ω-3 polyunsaturated fatty acids (ω-3 PUFAs) such as docosahexaenoic acid (DHA). Some epidemiological studies have suggested that the intake of DHA can alleviate the neurotoxicity of MeHg, but the underlying mechanism is not known. Herein, we observed that pretreatment with 0.1–1 µM DHA suppressed MeHg-induced cytotoxicity in human neuroblastoma (SH-SY5Y) cells and mouse primary neuronal cells. These effects of DHA were canceled in the presence of the retinoid X receptor (RXR) antagonist UVI3003. An RXR agonist, bexarotene, suppressed the cytotoxicity of MeHg. DHA also suppressed the MeHg-induced production of reactive oxygen species (ROS) via an induction of antioxidant genes (catalase and SOD1). Pretreatment with DHA did not change the incorporation of MeHg. We showed previously that in the brain, the intake of DHA increased the level of 19,20-DHDP, which is the metabolite produced by cytochrome P450 and soluble epoxide hydrolase from DHA. In the present study, we observed that 19,20-DHDP also suppressed neurotoxicity from MeHg. These results indicate that DHA and its metabolites have a protective role in MeHg-induced neurotoxicity.


Sign in / Sign up

Export Citation Format

Share Document