Selective insecticides secure natural enemies action in cotton pest management

2019 ◽  
Vol 184 ◽  
pp. 109669 ◽  
Author(s):  
Anderson V.A. Machado ◽  
Denner M. Potin ◽  
Jorge B. Torres ◽  
Christian S.A. Silva Torres
2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Peris Wangari Nderitu ◽  
Mattias Jonsson ◽  
Esther Arunga ◽  
Mark Otieno ◽  
John Jamleck Muturi ◽  
...  

Combination of pest management strategies that minimize pesticide use and conserve natural enemies is important for a sustainable environment. Overreliance on synthetic insecticides in the management of Tuta absoluta has led to pesticide resistance leading to difficulties in managing the pest. In this regard, alternative measures need to be put in place to reduce the effects of this pest. The objective of this study was, therefore, to assess the effectiveness of host plant resistance, biological control, and selective insecticides when used in combination, in the management of T. absoluta in tomato production. The study was set up in a greenhouse in a completely randomized design involving two tomato varieties, an insecticide (chlorantraniliprole), and a biological control agent(Macrolophus pygmaeus), applied singly or in combination. Data were collected on T. absoluta damage from the lower, intermediate, and upper leaves. The results from this study show that a combination of insecticide with a moderately resistant variety had a significantly lower T. absoluta damage as compared with a susceptible variety combined with an insecticide. However, the moderately resistant variety when combined with insecticide showed no effect when the biological control agent was added. The susceptible variety significantly reduced T. absoluta damage when combined with the biological control agent. These results indicate that treatment combinations in insect pest management can be utilized. The present study results indicate that using a moderately resistant variety (Riogrande VF) in combination with the insecticide chlorantraniliprole (Coragen®) and a susceptible variety (Pesa F1) in combination with the biological control agent (M. pygmaeus) can improve T. absoluta management. Under good habitat management, the susceptible variety will perform equally as the moderately resistant variety due to suppression of the T. absoluta populations by natural enemies. These findings show the importance of environmental conservation both by enhancing natural enemy abundance and use of selective insecticide in the management of T. absoluta in tomato production. Combinations in this present study are likely to reduce insecticide doses, thereby reducing the cost of production and enhancing environmental compatibility with natural enemies.


Insects ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 74
Author(s):  
Xiao-wei Li ◽  
Xin-xin Lu ◽  
Zhi-jun Zhang ◽  
Jun Huang ◽  
Jin-ming Zhang ◽  
...  

Intercropping of aromatic plants provides an environmentally benign route to reducing pest damage in agroecosystems. However, the effect of intercropping on natural enemies, another element which may be vital to the success of an integrated pest management approach, varies in different intercropping systems. Rosemary, Rosmarinus officinalis L. (Lamiaceae), has been reported to be repellent to many insect species. In this study, the impact of sweet pepper/rosemary intercropping on pest population suppression was evaluated under greenhouse conditions and the effect of rosemary intercropping on natural enemy population dynamics was investigated. The results showed that intercropping rosemary with sweet pepper significantly reduced the population densities of three major pest species on sweet pepper, Frankliniella intonsa, Myzus persicae, and Bemisia tabaci, but did not affect the population densities of their natural enemies, the predatory bug, Orius sauteri, or parasitoid, Encarsia formosa. Significant pest population suppression with no adverse effect on released natural enemy populations in the sweet pepper/rosemary intercropping system suggests this could be an approach for integrated pest management of greenhouse-cultivated sweet pepper. Our results highlight the potential of the integration of alternative pest control strategies to optimize sustainable pest control.


Insects ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 128 ◽  
Author(s):  
Shovon Chandra Sarkar ◽  
Endong Wang ◽  
Shengyong Wu ◽  
Zhongren Lei

Companion planting is a well-known strategy to manage insect pests and support a natural enemy population through vegetative diversification. Trap cropping is one such type of special companion planting strategy that is traditionally used for insect pest management through vegetative diversification used to attract insect pests away from the main crops during a critical time period by providing them an alternative preferred choice. Trap crops not only attract the insects for feeding and oviposition, but also act as a sink for any pathogen that may be a vector. Considerable research has been conducted on different trap crops as companion plant species to develop improved pest management strategies. Despite this, little consensus exists regarding optimal trap cropping systems for diverse pest management situations. An advantage of trap cropping over an artificially released natural enemy-based biological control could be an attractive remedy for natural enemies in cropping systems. Besides, many trap crop species can conserve natural enemies. This secondary effect of attracting natural enemies may be an advantage compared to the conventional means of pest control. However, this additional consideration requires a more knowledge-intensive background to designing an effective trap cropping system. We have provided information based on different trap crops as companion plant, their functions and an updated list of trap cropping applications to attract insect pests and natural enemies that should be proven as helpful in future trap cropping endeavors.


1989 ◽  
Vol 3 (1) ◽  
pp. 72-75 ◽  
Author(s):  
Shelby J. Fleischer ◽  
Michael J. Gaylor ◽  
Ray Dickens ◽  
David L. Turner

Interstate rights-of-way may serve as weed host reservoirs for the tarnished plant bug, an insect pest of cotton. Management of these rights-of-way may have an impact upon cotton pest management. In a 3-yr study, time of mowing, frequency of mowing, and sulfometuron methyl applied against overwintering rosettes influenced the cover of annual fleabane and wild carrot, which harbor tarnished plant bugs.


1998 ◽  
Vol 81 (1) ◽  
pp. 131 ◽  
Author(s):  
Marjorie A. Hoy ◽  
D. Smith ◽  
G. A. C. Beattie ◽  
R. Broadley

Sign in / Sign up

Export Citation Format

Share Document