scholarly journals Application of Trap Cropping as Companion Plants for the Management of Agricultural Pests: A Review

Insects ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 128 ◽  
Author(s):  
Shovon Chandra Sarkar ◽  
Endong Wang ◽  
Shengyong Wu ◽  
Zhongren Lei

Companion planting is a well-known strategy to manage insect pests and support a natural enemy population through vegetative diversification. Trap cropping is one such type of special companion planting strategy that is traditionally used for insect pest management through vegetative diversification used to attract insect pests away from the main crops during a critical time period by providing them an alternative preferred choice. Trap crops not only attract the insects for feeding and oviposition, but also act as a sink for any pathogen that may be a vector. Considerable research has been conducted on different trap crops as companion plant species to develop improved pest management strategies. Despite this, little consensus exists regarding optimal trap cropping systems for diverse pest management situations. An advantage of trap cropping over an artificially released natural enemy-based biological control could be an attractive remedy for natural enemies in cropping systems. Besides, many trap crop species can conserve natural enemies. This secondary effect of attracting natural enemies may be an advantage compared to the conventional means of pest control. However, this additional consideration requires a more knowledge-intensive background to designing an effective trap cropping system. We have provided information based on different trap crops as companion plant, their functions and an updated list of trap cropping applications to attract insect pests and natural enemies that should be proven as helpful in future trap cropping endeavors.

2008 ◽  
Vol 48 (12) ◽  
pp. 1531 ◽  
Author(s):  
Joanne C. Holloway ◽  
Michael J. Furlong ◽  
Philip I. Bowden

Beneficial invertebrates (predators and parasitoids) can make significant contributions to the suppression of insect pest populations in many cropping systems. In Australia, natural enemies are incorporated into integrated pest management programs in cotton and horticultural agroecosystems. They are also often key components of effective programs for the management of insect pests of grain crops in other parts of the world. However, few studies have examined the contribution of endemic natural enemies to insect pest suppression in the diverse grain agroecosystems of Australia. The potential of these organisms is assessed by reviewing the role that natural enemies play in the suppression of the major pests of Australian grain crops when they occur in overseas grain systems or other local agroecosystems. The principal methods by which the efficacy of biological control agents may be enhanced are examined and possible methods to determine the impact of natural enemies on key insect pest species are described. The financial and environmental benefits of practices that encourage the establishment and improve the efficacy of natural enemies are considered and the constraints to adoption of these practices by the Australian grains industry are discussed.


1991 ◽  
Vol 67 (5) ◽  
pp. 500-505 ◽  
Author(s):  
V. G. Nealis

Forest insect pest management differs from pest management in other renewable-resource industries because of the relative complexity and stability of the forest environment. An important component of this complexity is the rich fauna of natural enemies attacking most forest insect pests. Understanding the relationship between forest insect pests and their natural enemies would permit better insight into the dynamics of pest populations.The active release of natural enemies in inoculative or inundative release strategies is a direct application of biological control to pest management. The conservation of resident natural enemies is an indirect biological control method with great potential. Knowledge of the ecology of natural enemies can be used to modify other forest practices such as reforestation and insecticide use to conserve or enhance the action of natural enemies.


Insects ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 439 ◽  
Author(s):  
Anamika Sharma ◽  
Ramandeep Kaur Sandhi ◽  
Gadi V. P. Reddy

Biological control agents and semiochemicals have become essential parts of the integrated pest management of insect pests over recent years, as the incorporation of semiochemicals with natural enemies and entomopathogenic microbials has gained significance. The potential of insect pheromones to attract natural enemies has mainly been established under laboratory conditions, while semiochemicals from plants have been used to attract and retain natural enemies in field conditions using strategies such as trap crops and the push–pull mechanism. The best-known semiochemicals are those used for parasitoids–insect pest–plant host systems. Semiochemicals can also aid in the successful dispersal of entomopathogenic microbials. The use of semiochemicals to disseminate microbial pathogens is still at the initial stage, especially for bacterial and viral entomopathogens. Future studies should focus on the integration of semiochemicals into management strategies for insects, for which several semiochemical compounds have already been studied. More effective formulations of microbial agents, such as granular formulations of entomopathogenic fungi (EPFs), along with bio-degradable trap materials, could improve this strategy. Furthermore, more studies to evaluate species-specific tactics may be needed, especially where more than one key pest is present.


2016 ◽  
Vol 1 (2) ◽  
pp. 55
Author(s):  
. Nurindah ◽  
Dwi Adi Sunarto ◽  
. Sujak

<p>Pengelolaan serangga hama dalam good agricultural practices (GAP) menerapkan cara-cara memproduksi tanaman yang berkualitas dengan menggunakan metode-metode pengelolaan serangga hama yang dapat meningkatkan keragaman genetik, keanekaragaman hayati dan habitatnya, serta terhadap struktur sosial dan komunitas pedesaan. Strategi ‘tolak-tarik’ (‘push-pull’ strategy) merupakan salah satu teknik pengenda-lian hama yang berprinsip pada komponen pengendalian non-toksik, sehingga dapat diintegrasikan dengan metode-metode lain yang dapat menekan perkembangan populasi hama dengan meningkatkan peran mu-suh alami pada pertanaman. Penelitian tanaman perangkap untuk pengendalian serangga tanaman temba-kau cerutu besuki dilaksanakan di Desa Antirogo, Kecamatan Sumbersari, Jember pada bulan Agustus–De-sember 2008. Pada penelitian ini digunakan tanaman jarak kepyar, sorgum, dan kacang hijau sebagai ta-naman penarik yang ditanam secara berlajur sebanyak satu atau dua baris di antara delapan baris tanaman tembakau. Sebagai pembanding adalah tanaman tembakau monokultur dengan penyemprotan insektisida secara berjadwal setiap empat hari sejak 10–50 HST dan petak kontrol, yaitu tanaman monokultur tanpa pe-ngendalian hama sama sekali. Penelitian disusun dalam rancangan acak kelompok dengan lima perlakuan yang diulang lima kali. Penelitian ini bertujuan untuk memilih tanaman perangkap yang dapat digunakan da-lam program pengendalian hama cerutu besuki secara terpadu. Hasil penelitian menunjukkan bahwa tanam-an jarak kepyar, sorgum, dan kacang hijau dapat digunakan sebagai tanaman perangkap, sehingga populasi hama pada tembakau dapat ditekan hingga 50% dan diperoleh produksi daun basah (8,62–9,17 ton/ha vs 8,42 ton/ha) dan kerosok (1,01–1,07 ton/ha vs 0,96 ton/ha) dengan mutu yang lebih baik dibandingkan kontrol (indeks mutu: 62,5–64,4 vs 62,1). Penggunaan kacang hijau memberikan produksi kerosok dengan mutu baik tertinggi, sehingga memberikan penerimaan yang lebih tinggi dibandingkan perlakuan lain. Pe-nyemprotan insektisida secara berjadwal untuk mengendalikan serangga hama tembakau cerutu besuki na-oogst merupakan tindakan pengendalian yang tidak efektif dan juga tidak efisien, karena sasaran serangga hama tidak tepat, sehingga terjadi pemborosan biaya input.</p><p> </p><p>Pest management in good agricultural practices concept use methods of qualified crop production processes with considering increasing genetic diversity, biodiversity and its habitat as well as social structure and village community. Push-and-pull strategy is a pest control method with a non-toxic method principal so that it can be integrated with other methods to suppress pest population and increase natural enemies’ populationin the ecosystems. Research on trap crops used for controlling insect pests on besuki-cigar tobaccowas conducted on besuki-cigar tobacco fields planted after rice (na-oogst) in Jember on August–December2008. In this research activity we used castor, sorghum, and mungbean as trap crops, each was intercroppedin one or two rows between eight rows of tobacco plants. We used monoculture tobacco plants withscheduled sprays of chemical insecticide, i.e. 4 days-spray interval on 10–50 days after planting and controlplots without any insect pest control for comparison with the use of trap crops. The research was arrangedin randomized block design with five treatments and five replicates. The aim of the research is to choose asuitable trap crop used in pest management of besuki cigar tobacco. The results showed that castor, sorghum,and mungbean could be use as trap crops to suppress insect pests population up to 25% on tobaccoplants and would give leaf production (1.01–1.07 ton/ha vs 0,96 ton cured leaves/ha) with a better quality(quality index: 62.5–64.4 vs 62.1) than those of control. Mungbean is the best trap crop as it gives a highestleaf production with a better quality, so that gives a better income than those of other treatments. Scheduledchemical insecticide sprays to control insect pest on na-oogst-besuki cigar tobacco was not either effectiveor efficient, because the target pest was not right, so that causing a wasteful input cost.</p>


2019 ◽  
Vol 29 (6) ◽  
pp. 923-932
Author(s):  
Amanda Skidmore ◽  
Neil Wilson ◽  
Mark Williams ◽  
Ric Bessin

Pest management in cucurbit (Cucurbitaceae) cropping systems is challenging. As a result, pesticides are heavily used for managing insect pests and diseases. This work focused on the application of integrated pest management (IPM) techniques to control pests and reduce reliance on insecticide sprays while maintaining the quality and quantity of marketable yields in two commonly grown cucurbit crops: muskmelon (Cucumis melo) and summer squash (Cucurbita pepo). Plasticulture (raised beds covered in black plastic mulch) and strip tillage, two soil management systems commonly used for cucurbit IPM production, were compared to determine their impact on yield and pest numbers during the 2013–14 growing seasons. Additionally, the use of early season rowcovers and their impact on yield and pest pressure were investigated. Plasticulture use increased marketable yields compared with strip tillage for both summer squash and muskmelon, but strip tillage resulted in fewer total pests for both crops. Rowcover use did not have a consistent effect on insect pest numbers and showed a negative impact on the yield of both summer squash and muskmelon. No significant impacts on yield were observed when the interaction between rowcovers and the tillage system was investigated. The use of rowcovers impacted pest numbers, but these impacts were not consistent between insect pest species. Insecticide use was reduced in covered treatments, but only by one application. We concluded that these management techniques have the potential to be used in an IPM system, but the reduced marketable yield of strip tillage systems may reduce the adoption of this IPM technique for these crops.


2020 ◽  
Vol 31 (1) ◽  
pp. 24-35 ◽  
Author(s):  
Somiahnadar Rajendran

Insects are a common problem in stored produce. The author describes the extent of the problem and approaches to countering it. Stored products of agricultural and animal origin, whether edible or non-edible, are favourite food for insect pests. Durable agricultural produce comprising dry raw and processed commodities and perishables (fresh produce) are vulnerable to insect pests at various stages from production till end-use. Similarly, different animal products and museum objects are infested mainly by dermestids. Insect pests proliferate due to favourable storage conditions, temperature and humidity and availability of food in abundance. In addition to their presence in food commodities, insects occur in storages (warehouses, silos) and processing facilities (flour mills, feed mills). Insect infestation is also a serious issue in processed products and packed commodities. The extent of loss in stored products due to insects varies between countries depending on favourable climatic conditions, and pest control measures adopted. In stored food commodities, insect infestation causes loss in quantity, changes in nutritional quality, altered chemical composition, off-odours, changes in end-use products, dissemination of toxigenic microorganisms and associated health implications. The insects contribute to contaminants such as silk threads, body fragments, hastisetae, excreta and chemical secretions. Insect activity in stored products increases the moisture content favouring the growth of moulds that produce mycotoxins (e.g., aflatoxin in stored peanuts). Hide beetle, Dermestes maculatus infesting silkworm cocoons has been reported to act as a carrier of microsporidian parasite Nosema bombycis that causes pebrine disease in silkworms. In dried fish, insect infestation leads to higher bacterial count and uric acid levels. Insects cause damage in hides and skins affecting their subsequent use for making leather products. The trend in stored product insect pest management is skewing in favour of pest prevention, monitoring, housekeeping and finally control. Hermetic storage system can be supplemented with CO2 or phosphine application to achieve quicker results. Pest detection and monitoring has gained significance as an important tool in insect pest management. Pheromone traps originally intended for detection of infestations have been advanced as a mating disruption device ensuing pest suppression in storage premises and processing facilities; pheromones also have to undergo registration protocols similar to conventional insecticides in some countries. Control measures involve reduced chemical pesticide use and more non-chemical inputs such as heat, cold/freezing and desiccants. Furthermore, there is an expanding organic market where physical and biological agents play a key role. The management options for insect control depend on the necessity or severity of pest incidence. Generally, nonchemical treatments, except heat, require more treatment time or investment in expensive equipment or fail to achieve 100% insect mortality. Despite insect resistance, environmental issues and residue problems, chemical control is inevitable and continues to be the most effective and rapid control method. There are limited options with respect to alternative fumigants and the alternatives have constraints as regards environmental and health concerns, cost, and other logistics. For fumigation of fresh agricultural produce, new formulations of ethyl formate and phosphine are commercially applied replacing methyl bromide. Resistance management is now another component of stored product pest management. In recent times, fumigation techniques have improved taking into consideration possible insect resistance. Insect control deploying nanoparticles, alone or as carriers for other control agents, is an emerging area with promising results. As there is no single compound with all the desired qualities, a necessity has arisen to adopt multiple approaches. Cocktail applications or combination treatments (IGRs plus organophosphorus insecticides, diatomaceous earth plus contact insecticides, nanoparticles plus insecticides/pathogens/phytocompounds and conventional fumigants plus CO2; vacuum plus fumigant) have been proved to be more effective. The future of store product insect pest management is deployment of multiple approaches and/or combination treatments to achieve the goal quickly and effectively.


2021 ◽  
Vol 3 (2) ◽  
pp. 383-393
Author(s):  
Patient Farsia Djidjonri ◽  
Nukenine Elias Nchiwan ◽  
Hartmut Koehler

The present study investigates the effect of intercropping (maize-cowpea, maize-okra, maize-okra-cowpea, okra-cowpea) compared to insecticide application on the level of infestation of insect pests and the final yield of maize, cowpea and okra. Field experiments were conducted during the 2016 and 2017 cropping seasons in the Guinean Savannah (Dang-Ngaoundere) and Sudano Sahelian (Gouna-Garoua) agro-ecological zones in Cameroon. Our experimental design was a split plot arrangement in a randomized complete block with four replications. The main factor was assigned to the use of insecticide (Cypermethrin) and sub plots were devoted for cropping systems. We compared the efficiency of intercropping to that of Cypermethrin application on the Yield of maize, cowpea and okra as influenced by insect pest damages. The comparison of monocropped sprayed by Cypermethrin to unsprayed showed that, in Dang, insect pests reduced maize yield by 37% and 24% in 2016 and 2017, respectively, whereas in Gouna, it was lower than 8% during the both years. Reduction in seed yield by insect pests on cowpea in Dang represented 47% and 50% in 2016 and 2017, respectively, whereas in Gouna, it was 55% and 63% in 2016 and 2017, respectively. For okra, insect pests reduced okra fruit yield by 25% and 44% in Dang and 23% and 28% in Gouna, respectively, in 2016 and 2017. Crop yield was lower in intercropping compared to monoculture due to competition of plants in association on different resources. Considering the total yields obtained from each intercropping, intercropping trials resulted generally in higher yields compared to mono-culture (LER > 1) in both sites and years but the respective yields were quite different. On the basis of the results obtained, we recommend maize-cowpea intercropping as a sustainable solution to reduce the infestation level of their pest insects.


Insects ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 74
Author(s):  
Xiao-wei Li ◽  
Xin-xin Lu ◽  
Zhi-jun Zhang ◽  
Jun Huang ◽  
Jin-ming Zhang ◽  
...  

Intercropping of aromatic plants provides an environmentally benign route to reducing pest damage in agroecosystems. However, the effect of intercropping on natural enemies, another element which may be vital to the success of an integrated pest management approach, varies in different intercropping systems. Rosemary, Rosmarinus officinalis L. (Lamiaceae), has been reported to be repellent to many insect species. In this study, the impact of sweet pepper/rosemary intercropping on pest population suppression was evaluated under greenhouse conditions and the effect of rosemary intercropping on natural enemy population dynamics was investigated. The results showed that intercropping rosemary with sweet pepper significantly reduced the population densities of three major pest species on sweet pepper, Frankliniella intonsa, Myzus persicae, and Bemisia tabaci, but did not affect the population densities of their natural enemies, the predatory bug, Orius sauteri, or parasitoid, Encarsia formosa. Significant pest population suppression with no adverse effect on released natural enemy populations in the sweet pepper/rosemary intercropping system suggests this could be an approach for integrated pest management of greenhouse-cultivated sweet pepper. Our results highlight the potential of the integration of alternative pest control strategies to optimize sustainable pest control.


2020 ◽  
Vol 113 (4) ◽  
pp. 1864-1871
Author(s):  
S Sherbrooke ◽  
Y Carrière ◽  
J C Palumbo

Abstract Trap cropping, in which a trap crop is planted near a cash crop, has been used successfully for reducing pest damage in some agricultural systems. We used a meta-analysis of extensive data on two trap cropping systems, diamondback moth, Plutella xylostella (Linnaeus), exploiting cabbage and Chilo partellus (Swinhoe) (Lepidoptera: Crambidae) exploiting maize, to show that oviposition preference for, and high larval mortality on trap crops are important indicators of effectiveness of trap cropping systems. We then evaluated Indian mustard (Brassica juncea var. juncea L. Czern.) (Capparidales: Brassicaceae) and yellow rocket (Barbarea vulgaris W. T. Aiton) (Brassicales: Brassicaceae) as trap crops for protecting broccoli (Brassica oleracea var. italica Plenck) (Capparidales: Brassicaceae) against diamondback moth in Yuma, AZ, using planting configurations compatible with current practices for commercial production and without use of insecticides. In oviposition choice tests, both yellow rocket and Indian mustard were highly preferred over broccoli in the field. Furthermore, the number of larvae and pupae was significantly lower on yellow rocket and Indian mustard compared to broccoli, indicating relatively high mortality on these trap crops. Nevertheless, during the fall and spring growing seasons, no significant differences in the number of individuals on broccoli or proportion of broccoli crowns infested at harvest occurred between plots with trap crops relative to plots exclusively planted to broccoli. Thus, with the plant density and planting patterns used and without use of insecticides, there was no evidence that trap cropping was effective for reducing diamondback moth infestation of broccoli.


2020 ◽  
Vol 113 (5) ◽  
pp. 2061-2068
Author(s):  
Jia-Wei Tay ◽  
Dong-Hwan Choe ◽  
Ashok Mulchandani ◽  
Michael K Rust

Abstract Here, we review the literature on the development and application of hydrogel compounds for insect pest management. Researchers have used hydrogel compounds for the past few decades to achieve the controlled release of various contact insecticides, but in recent years, hydrogel compounds have also been used to absorb and deliver targeted concentrations of toxicants within a liquid bait to manage insect pests. The highly absorbent hydrogel acts as a controlled-release formulation that keeps the liquid bait available and palatable to the target pests. This review discusses the use of various types of hydrogel compounds in pest management based on different environmental settings (e.g., agricultural, urban, and natural areas), pest systems (e.g., different taxa), and modes of insecticide delivery (e.g., spray vs bait). Due to their unique physicochemical properties, hydrogel compounds have great potential to be developed into new and efficacious pest management strategies with minimal environmental impact. We will also discuss the future research and development of hydrogels in this review.


Sign in / Sign up

Export Citation Format

Share Document