Improving the resolution of UAV-based remote sensing data of water quality of Lake Hachiroko, Japan by neural networks

2021 ◽  
pp. 101276
Author(s):  
Kai Matsui ◽  
Hikaru Shirai ◽  
Yoichi Kageyama ◽  
Hiroshi Yokoyama
2020 ◽  
Vol 44 (5) ◽  
pp. 763-771
Author(s):  
A.V. Kuznetsov ◽  
M.V. Gashnikov

We investigate image retouching algorithms for generating forgery Earth remote sensing data. We provide an overview of existing neural network solutions in the field of generation and inpainting of remote sensing images. To retouch Earth remote sensing data, we use imageinpainting algorithms based on convolutional neural networks and generative-adversarial neural networks. We pay special attention to a generative neural network with a separate contour prediction block that includes two series-connected generative-adversarial subnets. The first subnet inpaints contours of the image within the retouched area. The second subnet uses the inpainted contours to generate the resulting retouch area. As a basis for comparison, we use exemplar-based algorithms of image inpainting. We carry out computational experiments to study the effectiveness of these algorithms when retouching natural data of remote sensing of various types. We perform a comparative analysis of the quality of the algorithms considered, depending on the type, shape and size of the retouched objects and areas. We give qualitative and quantitative characteristics of the efficiency of the studied image inpainting algorithms when retouching Earth remote sensing data. We experimentally prove the advantage of generative-competitive neural networks in the construction of forgery remote sensing data.


Author(s):  
Afreen Siddiqi ◽  
Sheila Baber ◽  
Olivier De Weck

2012 ◽  
Vol 573-574 ◽  
pp. 271-276
Author(s):  
Ping Ren ◽  
Jie Ming Zhou

The existing Fengyun (FY) satellites, resource satellites and ocean satellites all can observe the earth muti-funtionally and work well in monitoring environment and disasters. However, all these satellites are insufficient for space resolution, time resolution, spectral resolution and all-weather requirements when facing complicated environmental problems and natural disasters. This paper evaluates the multi-spectral remote sensing data quality of the Environment and Disasters Monitoring Micro-satellite Constellation (HJ-1A/B)A/B satellite and extracts data characteristics to offer references for promotion and application this data.


Sign in / Sign up

Export Citation Format

Share Document