Analysis on change detection techniques for remote sensing applications: A review

2021 ◽  
pp. 101310
Author(s):  
Yasir Afaq ◽  
Ankush Manocha
Author(s):  
P. J. Soto ◽  
G. A. O. P. Costa ◽  
R. Q. Feitosa ◽  
P. N. Happ ◽  
M. X. Ortega ◽  
...  

Abstract. Deep learning classification models require large amounts of labeled training data to perform properly, but the production of reference data for most Earth observation applications is a labor intensive, costly process. In that sense, transfer learning is an option to mitigate the demand for labeled data. In many remote sensing applications, however, the accuracy of a deep learning-based classification model trained with a specific dataset drops significantly when it is tested on a different dataset, even after fine-tuning. In general, this behavior can be credited to the domain shift phenomenon. In remote sensing applications, domain shift can be associated with changes in the environmental conditions during the acquisition of new data, variations of objects’ appearances, geographical variability and different sensor properties, among other aspects. In recent years, deep learning-based domain adaptation techniques have been used to alleviate the domain shift problem. Recent improvements in domain adaptation technology rely on techniques based on Generative Adversarial Networks (GANs), such as the Cycle-Consistent Generative Adversarial Network (CycleGAN), which adapts images across different domains by learning nonlinear mapping functions between the domains. In this work, we exploit the CycleGAN approach for domain adaptation in a particular change detection application, namely, deforestation detection in the Amazon forest. Experimental results indicate that the proposed approach is capable of alleviating the effects associated with domain shift in the context of the target application.


Information ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 353 ◽  
Author(s):  
Chiman Kwan

Multispectral (MS) and hyperspectral (HS) images have been successfully and widely used in remote sensing applications such as target detection, change detection, and anomaly detection. In this paper, we aim at reviewing recent change detection papers and raising some challenges and opportunities in the field from a practitioner’s viewpoint using MS and HS images. For example, can we perform change detection using synthetic hyperspectral images? Can we use temporally-fused images to perform change detection? Some of these areas are ongoing and will require more research attention in the coming years. Moreover, in order to understand the context of our paper, some recent and representative algorithms in change detection using MS and HS images are included, and their advantages and disadvantages will be highlighted.


Sign in / Sign up

Export Citation Format

Share Document