Impacts of EU carbon emission trade directive on energy-intensive industries — Indicative micro-economic analyses

2007 ◽  
Vol 63 (4) ◽  
pp. 799-806 ◽  
Author(s):  
Peter Lund
Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4700
Author(s):  
Andrius Zuoza ◽  
Vaida Pilinkienė

Climate change and efforts to mitigate it have given rise to an interest in the relationship between industry competitiveness, energy efficiency, and carbon emissions. A better understanding of this relationship can be essential for economic and environmental decision-makers. This paper presents empirical research evaluating industry competitiveness through the factors of energy efficiency and carbon emission in Europe’s most energy-intensive industries. The designed industry competitiveness measure index consists of seven components, grouped into three equally weighted sub-indexes: export performance, energy, and environmental. The export performance of the industry is described by the industry export growth rate, the share of the industry’s export, and the effects on the industry’s competitiveness of changes in a country’s export. The energy intensity of the industry and energy prices are integrated into the energy sub-index. The environmental sub-index consists of the industry’s emissions intensity, and the ratio of freely allocated allowances and verified emissions indicators. The findings indicate that countries with the highest index value also have a positive energy intensity and carbon emission indicator value. The average index value of each industry gradually reduces to zero, and the standard deviation of the index value shows a diminishing trend throughout all sectors, which implies that competitiveness in all sectors is increasing and that all countries are nearing the industry average. The ANOVA results show that: (1) the competitiveness index value was statistically significantly different in the investigated countries; (2) the competitiveness index value was statistically non-significantly different in the investigated industries; (3) there was a significant effect of the interaction between country and industry on the competitiveness index value. These results suggest that the country itself and industry/country interaction significantly affect the competitiveness index. However, it should be mentioned that industry per se does not substantially affect the competitiveness index score.


2021 ◽  
Author(s):  
Yao Chen ◽  
Jing Wu

Abstract As the major energy consumers, energy-intensive industries are the key players in achieving carbon emission reduction targets. Grasping the carbon emission reduction potential has a direct impact on the implementation of the carbon emission reduction policies of China. The paper builds a super-Slack Based Model(SBM) considering this undesirable output, and calculates the carbon emission efficiency. Then, the Meta-Frontier Malmquist-Luenberger productivity index (MF-MLPI) is constructed to dynamically analyse the growth rate changes of the carbon emission efficiency and the regional differences in energy-intensive industries. Furthermore, the carbon emission reduction potential of the energy-intensive industries in various economic regions of China is discussed and the conclusions are as follows: there is a big difference in the carbon emission Technology Gap Ratios (TGRs) of the energy-intensive industries in different economic regions; the growth rate of the carbon emission efficiency of energy-intensive industries shows a trend of first declining and then slowly recovering while the carbon reduction potential generally shows a trend of decreasing and then rising; and the carbon emission reduction potential in the eastern region keeps decreasing. The following is recommended: the government should rationally distribute energy-intensive industries, promote industrial structure adjustment, optimize the energy structure according to the regional industrial advantages; increase investment in R&D, promote energy technology innovation in energy-intensive industries; prioritize the promotion of carbon peaks on key emission industries and regional, formulate differentiated plans for the regions and industries with different carbon emission reduction potentials.


Sign in / Sign up

Export Citation Format

Share Document