The impact of rainfall magnitude on the performance of digital soil mapping over low-relief areas using a land surface dynamic feedback method

2017 ◽  
Vol 72 ◽  
pp. 297-309 ◽  
Author(s):  
Canying Zeng ◽  
A-Xing Zhu ◽  
Feng Liu ◽  
Lin Yang ◽  
David G. Rossiter ◽  
...  
2013 ◽  
Vol 37 (2) ◽  
pp. 359-366 ◽  
Author(s):  
Alexandre ten Caten ◽  
Ricardo Simão Diniz Dalmolin ◽  
Fabrício de Araújo Pedron ◽  
Luis Fernando Chimelo Ruiz ◽  
Carlos Antônio da Silva

Digital information generates the possibility of a high degree of redundancy in the data available for fitting predictive models used for Digital Soil Mapping (DSM). Among these models, the Decision Tree (DT) technique has been increasingly applied due to its capacity of dealing with large datasets. The purpose of this study was to evaluate the impact of the data volume used to generate the DT models on the quality of soil maps. An area of 889.33 km² was chosen in the Northern region of the State of Rio Grande do Sul. The soil-landscape relationship was obtained from reambulation of the studied area and the alignment of the units in the 1:50,000 scale topographic mapping. Six predictive covariates linked to the factors soil formation, relief and organisms, together with data sets of 1, 3, 5, 10, 15, 20 and 25 % of the total data volume, were used to generate the predictive DT models in the data mining program Waikato Environment for Knowledge Analysis (WEKA). In this study, sample densities below 5 % resulted in models with lower power of capturing the complexity of the spatial distribution of the soil in the study area. The relation between the data volume to be handled and the predictive capacity of the models was best for samples between 5 and 15 %. For the models based on these sample densities, the collected field data indicated an accuracy of predictive mapping close to 70 %.


2020 ◽  
Vol 12 (3) ◽  
pp. 433 ◽  
Author(s):  
George van Zijl ◽  
Johan van Tol ◽  
Darren Bouwer ◽  
Simon Lorentz ◽  
Pieter le Roux

Urbanization and hydrology have an interactive relationship, as urbanization changing the hydrology of a system and the hydrology commonly causing structural damage to the infrastructure. Hydrological modelling has been used to quantify the water causing structural impacts, and to provide solutions to the issues. However, in already-urbanized areas, creating a soil map to use as input in the modelling process is difficult, as observation positions are limited and visuals of the natural vegetation which indicate soil distribution are unnatural. This project used historical satellite images in combination with terrain parameters and digital soil mapping methods to produce an accurate (Kappa statistic = 0.81) hydropedology soil map for the Cosmo City suburb in Johannesburg, South Africa. The map was used as input into the HYDRUS 2D and SWAT hydrological models to quantify the water creating road damage at Kampala Crescent, a road within Cosmo City (using HYDRUS 2D), as well as the impact of urbanization on the hydrology of the area (using SWAT). HYDRUS 2D modelling showed that a subsurface drain installed at Kampala Crescent would need a carrying capacity of 0.3 m3·h−1·m−1 to alleviate the road damage, while SWAT modelling shows that surface runoff in Cosmo City will commence with as little rainfall as 2 mm·month−1. This project showcases the value of multidisciplinary work. The remote sensing was invaluable to the mapping, which informed the hydrological modelling and subsequently provided answers to the engineers, who could then mitigate the hydrology-related issues within Cosmo City.


2020 ◽  
Vol 12 (10) ◽  
pp. 1691
Author(s):  
Canying Zeng ◽  
Lin Yang ◽  
A-Xing Zhu

The soil spectral dynamic feedback captured from high temporal resolution remote sensing data, such as MODIS, during the soil drying process after a rainfall could assist with digital soil mapping. However, this method is ineffective in utilizing the images with a relatively high spatial resolution. There are an insufficient number of images in the soil drying process since those high spatial resolution images tend to have a low temporal resolution. This study is aimed at generating soil spectral dynamic feedback by integrating the feedback captured from the images with a high spatial resolution during the process of multiple drying after different rainfall events. The Landsat 8 data with a temporal resolution of 16 day was exemplified. Each single spectral feedback obtained from Landsat 8 was first adjusted to eliminate the impact of different rainfall magnitudes. Then, the soil spectral dynamic feedback was reorganized and generated based on the adjusted feedback. Finally, the soil spectral dynamic feedback generated based on Landsat 8 was used for mapping topsoil texture and compared with the mapping results based on the MODIS data and the fusion data of MODIS and Landsat 8. As revealed by the results, not only could the generated soil spectral dynamic feedback based on Landsat 8 data improve the details of the spatial distribution of soil texture, but it also enhances the accuracy of mapping. The mapping accuracy based on Landsat 8 data is higher than that based on the MODIS data and fusion data. The improvements of accuracy are more obvious in the areas with more complex surface conditions. This study widens the scope of application for soil spectral dynamic feedback and provides support for large-scale and high-precision digital soil mapping.


Sign in / Sign up

Export Citation Format

Share Document