Sediment discharge into a subsiding Louisiana deltaic estuary through a Mississippi River diversion

2007 ◽  
Vol 71 (1-2) ◽  
pp. 181-193 ◽  
Author(s):  
Gregg A. Snedden ◽  
Jaye E. Cable ◽  
Christopher Swarzenski ◽  
Erick Swenson
1970 ◽  
Vol 1 (12) ◽  
pp. 107 ◽  
Author(s):  
Sherwood M. Gagliano ◽  
Hyuck J. Kwon ◽  
Johannes L. Van Beek

Coastal Louisiana wetlands are a product of Mississippi River delta building that has occurred over a period of 5,000 years The building process was a gradual one, for riverine and marine processes were very nearly balanced In modern times man's use of the area (flood control, navigation improvement, exploitation of petroleum and other minerals, road building, etc ) has seriously altered the natural balance As a result, overbank flooding has been virtually eliminated and river flow is confined to channels discharging into the outer shelf area Most transported sediment is now deposited in the deep Gulf of Mexico or along the continental shelf Saltwater encroachment in the deltaic estuaries has been detrimental to fauna and flora Even though considerable sediment deposition has resulted from the historic Atchafalaya River diversion and growth of subdeltas, comparative map studies indicate a net land loss rate of 16 5 miles^/year during the last 25 to 30 years Land loss is only one symptom of general environmental deterioration A dynamic management plan is proposed for better utilization of combined freshwater discharge - dissolved solid and transported sediment input from the Mississippi River Controlled flow into estuaries will reduce salinity encroachment and supply badly needed nutrients Large areas of new marshland and estuarme habitat can be built by controlled subdelta diversion Studies of natural subdeltas indicate that these systems are amenable to environmental management, salinities and sediment deposition may be manipulated to enhance desired conditions.


Author(s):  
Y. Jun Xu

Abstract. Many river deltas in the world are vibrant economic regions, serving as transportation hubs, population centres, and commercial hotspots. However, today, many of these deltaic areas face a tremendous challenge with land loss due to a number of factors, such as reduced riverine sediment supply, coastal land erosion, subsidence, and sea level rise. The development of the Mississippi River Deltaic Plain (MRDP) in southeast Louisiana, USA, over the past century is a good example. Since 1932, approximately 4877 km2 of the coastal land of MRDP has become submerged. The lower Mississippi River main channel entering the Gulf of Mexico has become an isolated waterway with both sides losing land. In contrast, large open water areas in the Mississippi River’s distributary basin, the Atchafalaya River basin, have been silted up over the past century, and the river mouth has developed a prograding delta feature at its two outlets to the Gulf of Mexico. The retrospective analysis of this paper makes it clear that the main cause of the land loss in the MRDP is not the decline of riverine sediment, but the disconnection of the sediment sources from the natural flood plains. Future sediment management efforts in the MRDP should focus on restoring the natural connection of riverine sediment supplies with flood plains, rather than solely using channelized river diversion. This could be achieved through controlled overbank flooding (COF) and artificial floods in conjunction with the use of a hydrograph-based sediment availability assessment.


2020 ◽  
Vol 12 (15) ◽  
pp. 2370
Author(s):  
Jonathan A. Flores ◽  
Joan Q. Wu ◽  
Claudio O. Stöckle ◽  
Robert P. Ewing ◽  
Xiao Yang

With the decline of operational river gauges monitoring sediments, a viable means of quantifying sediment transport is needed. In this study, we address this issue by applying relationships between hydraulic geometry of river channels, water discharge, water-leaving surface reflectance (SR), and suspended sediment concentration (SSC) to quantify sediment discharge with the aid of space-based observations. We examined 5490 Landsat scenes to estimate water discharge, SSC, and sediment discharge for the period from 1984 to 2017 at nine gauging sites along the Upper Mississippi River. We used recent advances in remote sensing of fluvial systems, such as automated river width extraction, Bayesian discharge inference with at-many-stations hydraulic geometry (AMHG), and SSC-SR regression models. With 621 Landsat scenes available from all the gauging sites, the results showed that the water discharge and SSC retrieval from Landsat imagery can yield reasonable sediment discharge estimates along the Upper Mississippi River. An overall relative bias of −25.4, mean absolute error (MAE) of 6.24 × 104 tonne/day, relative root mean square error (RRMSE) of 1.21, and Nash–Sutcliffe Efficiency (NSE) of 0.49 were obtained for the sediment discharge estimation. Based on these statistical metrics, we identified three of the nine gauging sites (St. Louis, MO; Chester, IL; and Thebes, IL), which were in the downstream portion of the river, to be the best locations for estimating water and sediment discharge using Landsat imagery.


Sign in / Sign up

Export Citation Format

Share Document