scholarly journals Rethinking the Mississippi River diversion for effective capture of riverine sediments

Author(s):  
Y. Jun Xu

Abstract. Many river deltas in the world are vibrant economic regions, serving as transportation hubs, population centres, and commercial hotspots. However, today, many of these deltaic areas face a tremendous challenge with land loss due to a number of factors, such as reduced riverine sediment supply, coastal land erosion, subsidence, and sea level rise. The development of the Mississippi River Deltaic Plain (MRDP) in southeast Louisiana, USA, over the past century is a good example. Since 1932, approximately 4877 km2 of the coastal land of MRDP has become submerged. The lower Mississippi River main channel entering the Gulf of Mexico has become an isolated waterway with both sides losing land. In contrast, large open water areas in the Mississippi River’s distributary basin, the Atchafalaya River basin, have been silted up over the past century, and the river mouth has developed a prograding delta feature at its two outlets to the Gulf of Mexico. The retrospective analysis of this paper makes it clear that the main cause of the land loss in the MRDP is not the decline of riverine sediment, but the disconnection of the sediment sources from the natural flood plains. Future sediment management efforts in the MRDP should focus on restoring the natural connection of riverine sediment supplies with flood plains, rather than solely using channelized river diversion. This could be achieved through controlled overbank flooding (COF) and artificial floods in conjunction with the use of a hydrograph-based sediment availability assessment.

Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1054 ◽  
Author(s):  
Nina Lam ◽  
Y. Xu ◽  
Kam-biu Liu ◽  
David Dismukes ◽  
Margaret Reams ◽  
...  

A pressing question facing the Mississippi River Delta (MRD), like many deltaic communities around the world, is: Will the system be sustainable in the future given the threats of sea level rise, land loss, natural disasters, and depleting natural resources? An integrated coastal modeling framework that incorporates both the natural and human components of these communities, and their interactions with both pulse and press stressors, is needed to help improve our understanding of coastal resilience. However, studying the coastal communities using a coupled natural-human system (CNH) approach is difficult. This paper presents a CNH modeling framework to analyze coastal resilience. We first describe such a CNH modeling framework through a case study of the Lower Mississippi River Delta in coastal Louisiana, USA. Persistent land loss and associated population decrease in the study region, a result of interplays between human and natural factors, are a serious threat to the sustainability of the region. Then, the paper describes the methods and findings of three studies on how community resilience of the MRD system is measured, how land loss is modeled using an artificial neural network-cellular automata approach, and how a system dynamic modeling approach is used to simulate population change in the region. The paper concludes by highlighting lessons learned from these studies and suggesting the path forward for analysis of coupled natural-human systems.


1970 ◽  
Vol 1 (12) ◽  
pp. 107 ◽  
Author(s):  
Sherwood M. Gagliano ◽  
Hyuck J. Kwon ◽  
Johannes L. Van Beek

Coastal Louisiana wetlands are a product of Mississippi River delta building that has occurred over a period of 5,000 years The building process was a gradual one, for riverine and marine processes were very nearly balanced In modern times man's use of the area (flood control, navigation improvement, exploitation of petroleum and other minerals, road building, etc ) has seriously altered the natural balance As a result, overbank flooding has been virtually eliminated and river flow is confined to channels discharging into the outer shelf area Most transported sediment is now deposited in the deep Gulf of Mexico or along the continental shelf Saltwater encroachment in the deltaic estuaries has been detrimental to fauna and flora Even though considerable sediment deposition has resulted from the historic Atchafalaya River diversion and growth of subdeltas, comparative map studies indicate a net land loss rate of 16 5 miles^/year during the last 25 to 30 years Land loss is only one symptom of general environmental deterioration A dynamic management plan is proposed for better utilization of combined freshwater discharge - dissolved solid and transported sediment input from the Mississippi River Controlled flow into estuaries will reduce salinity encroachment and supply badly needed nutrients Large areas of new marshland and estuarme habitat can be built by controlled subdelta diversion Studies of natural subdeltas indicate that these systems are amenable to environmental management, salinities and sediment deposition may be manipulated to enhance desired conditions.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2548
Author(s):  
Tsz Him Lo ◽  
H. C. (Lyle) Pringle

The Yazoo–Mississippi Delta is one of the regions within the Lower Mississippi River Basin where substantial irrigation development and consequent groundwater depletion have occurred over the past three decades. To describe this irrigation development, a study was conducted to analyze existing geospatial datasets and to synthesize the results with those of past government surveys. The effort produced a quantitative review characterizing three aspects of irrigation development from 1991 to 2020. First, the expansion of irrigated area was tracked in terms of absolute area and in terms of fraction relative to total land or cropland area. Second, trends in irrigated land cover were traced in terms of irrigated crop mix, irrigated fractions of main crops, and comparisons with non-irrigated land. Third, changes in irrigation systems were examined in terms of water sources, energy sources, and application methods. Original findings of this study for the end of 2020 included moderate positive spatial autocorrelation in the density of irrigated areas; a higher irrigated crop preference for soybean and rice over cotton and corn in highly hydric soils; and 91% and 3% of permitted areas studied being respectively under groundwater withdrawal permits exclusively and under surface water diversion permits exclusively. By compiling such information, this paper can serve as a convenient reference on the recent history and status of irrigation development in the Yazoo–Mississippi Delta.


Sign in / Sign up

Export Citation Format

Share Document