scholarly journals Editorial to the first International Conference on Smart Grid and Clean Energy Technologies (ICSGCE 2011)

2011 ◽  
Vol 12 ◽  
pp. 1 ◽  
2020 ◽  
Vol 92 (8) ◽  
pp. 1305-1320 ◽  
Author(s):  
Yulia H. Budnikova ◽  
Vera V. Khrizanforova

AbstractNowadays, hydrogen has become not only an extremely important chemical product but also a promising clean energy carrier for replacing fossil fuels. Production of molecular H2 through electrochemical hydrogen evolution reactions is crucial for the development of clean-energy technologies. The development of economically viable and efficient H2 production/oxidation catalysts is a key step in the creation of H2-based renewable energy infrastructure. Intrinsic limitations of both natural enzymes and synthetic materials have led researchers to explore enzyme-induced catalysts to realize a high current density at a low overpotential. In recent times, highly active widespread numerous electrocatalysts, both homogeneous or heterogeneous (immobilized on the electrode), such as transition metal complexes, heteroatom- or metal-doped nanocarbons, metal-organic frameworks, and other metal derivatives (calix [4] resorcinols, pectates, etc.), which are, to one extent or another, structural or functional analogs of hydrogenases, have been extensively studied as alternatives for Pt-based catalysts, demonstrating prospects for the development of a “hydrogen economy”. This mini-review generalizes some achievements in the field of development of new electrocatalysts for H2 production/oxidation and their application for fuel cells, mainly focuses on the consideration of the catalytic activity of M[P2N2]22+ (M = Ni, Fe) complexes and other nickel structures which have been recently obtained.


Author(s):  
Sameer Lamichaney ◽  
Rishav K. Baranwal ◽  
Saikat Maitra ◽  
Gautam Majumdar

2018 ◽  
Vol 10 (7) ◽  
pp. 2485 ◽  
Author(s):  
Rafaela Hillerbrand

This paper reflects on criticisms raised in the literature on the UN’s Sustainable Development Goals (SDGs). These have been criticized as creating a dichotomy between the environment and human beings that fails to address the multiple interconnections between the two. This paper focuses on SDG7—“affordable and clean energy”—and suggests that there is in fact a tripartite distinction between the environment, human beings and technology underlying the SDGs. This distinction, we argue, does not adequately represent the multiple interconnections among the various SDGs and hampers their implementation. We contend that the formulation of SDG7 produces a circular definition of sustainability, a difficulty that is currently resolved at the level of the targets and indicators in a way that regards energy technologies primarily as artifacts. By contrast, the literature on ethical aspects of energy systems largely agrees that energy is a paradigmatic example of a sociotechnical system. We contend that, by not considering this sociotechnical nature, the SDGs run the risk of implicitly defending a certain variant of technological optimism and determinism. We argue that this is disadvantageous to the environment, human well-being and technological development. In line with recent critical evaluations of the SDGs, we argue that these (and other) shortcomings can be addressed by better connecting the SDGs to human well-being. Building on recent literature that expands the scope of the Capability Approach as an alternative measure of well-being so as to include considerations of sustainability, we articulate a framework that allows us to elucidate this connection and thus to take advantage of synergies between human well-being and the environment. On the basis of the Capability Approach, we argue that equating sustainable energy with renewable energy—as is done in the transition from SDG7’s goal to its targets—is indefensible because, as part of the overarching energy systems, energy technologies cannot be classified as simply right or wrong. Rather, the indicators and targets within a framework focused on sustainability need to be (more) context sensitive, meaning that, among other things, they may vary by country and with the available technology.


Sign in / Sign up

Export Citation Format

Share Document