scholarly journals Experimental Investigation of Wind Turbine Wakes in the Wind Tunnel

2013 ◽  
Vol 35 ◽  
pp. 285-296 ◽  
Author(s):  
Heiner Schümann ◽  
Fabio Pierella ◽  
Lars Sætran
Energy ◽  
2019 ◽  
Vol 166 ◽  
pp. 819-833 ◽  
Author(s):  
Bingzheng Dou ◽  
Michele Guala ◽  
Liping Lei ◽  
Pan Zeng

Author(s):  
GholamHossein Maleki ◽  
Ali Reza Davari ◽  
Mohammad Reza Soltani

An extensive experimental investigation was conducted to study the effects of Dielectric Barrier Discharge (DBD), on the flow field of an airfoil at low Reynolds number. The DBD was mounted near the leading edge of a section of a wind turbine blade. It is believed that DBD can postpone the separation point on the airfoil by injecting momentum to the flow. The effects of steady actuations on the velocity profiles in the wake region have been investigated. The tests were performed at α = 4 to 36 degrees i.e. from low to deep stall angles of attack regions. Both surface pressure distribution and wake profile show remarkable improvement at high angles of attack, beyond the static stall angle of the airfoil when the plasma actuation was implemented. The drag calculated from the wake momentum deficit has further shown the favorable role of the plasma actuators to control the flow over the airfoil at incidences beyond the static stall angle of attack of this airfoil. The results demonstrated that DBD has been able to postpone the stall onset significantly. It has been observed that the best performance for the plasma actuation for this airfoil is in the deep stall angles of attack range. However, below and near the static stall angles of attack, plasma augmentation was pointed out to have a negligible improvement in the aerodynamic behavior.


2021 ◽  
pp. 0309524X2110071
Author(s):  
Usman Butt ◽  
Shafqat Hussain ◽  
Stephan Schacht ◽  
Uwe Ritschel

Experimental investigations of wind turbine blades having NACA airfoils 0021 and 4412 with and without tubercles on the leading edge have been performed in a wind tunnel. It was found that the lift coefficient of the airfoil 0021 with tubercles was higher at Re = 1.2×105 and 1.69×105 in post critical region (at higher angle of attach) than airfoils without tubercles but this difference relatively diminished at higher Reynolds numbers and beyond indicating that there is no effect on the lift coefficients of airfoils with tubercles at higher Reynolds numbers whereas drag coefficient remains unchanged. It is noted that at Re = 1.69×105, the lift coefficient of airfoil without tubercles drops from 0.96 to 0.42 as the angle of attack increases from 15° to 20° which is about 56% and the corresponding values of lift coefficient for airfoil with tubercles are 0.86 and 0.7 at respective angles with18% drop.


Sign in / Sign up

Export Citation Format

Share Document