surface pressure distribution
Recently Published Documents


TOTAL DOCUMENTS

170
(FIVE YEARS 20)

H-INDEX

16
(FIVE YEARS 1)

Author(s):  
Christoph Mertens ◽  
José L. Costa Fernández ◽  
Andrea Sciacchitano ◽  
Bas W. Van Oudheusden ◽  
Jurij Sodja

The aerodynamic loads on a flexible wing in terms of the surface pressure distribution and the lift force along the span are determined experimentally based on non-intrusive Lagrangian particle tracking (LPT) measurements. As the flexible wing deforms under the aerodynamic loads, its deformed shape is first reconstructed based on structural LPT measurements conducted together with the flow measurements in an integrated approach. Based on the reconstructed wing shape, flow tracers data are collected along surface normals to evaluate the surface pressure, as well as along elliptic paths around the wing to determine the circulation. The lift force is calculated from the surface pressure by integrating the pressure difference along the chord, as well as from the circulation using the Kutta-Joukowski theorem. The circulation-based lift results are in very good agreement with reference measurements from a force balance, with differences in the total lift force on the wing of less than 5%. The lift estimation based on the extrapolated surface pressure is consistently lower than the circulation-based lift, by about 10%, due to the limited accuracy of the pressure extrapolation near the leading edge region, where a considerable fraction of the lift is generated.


Author(s):  
Shan Gao ◽  
Yao Shi ◽  
Guang Pan

In order to study the influence of the ventilating cavitation flow at the shoulder of a submerged-launched vehicle on the surface hydrodynamic characteristics, a three-dimensional potential model for the shoulder ventilation of the vehicle was established based on the homogeneous multiphase flow theory, standard RNG k-ε model, Singhal cavitation model and overlapping grid technology, and the numerical simulation of the unsteady evolution process of the ventilated cavitation flow was carried out, and the cavitation flow morphology evolution, surface pressure distribution and resistance characteristics under different ventilation rates were compared. The results showed that the thickness and length of the ventilated cavitation flow in the early stage of fusion continue increased with the increasing of ventilation volume, and its thickness and length changed slightly in the later stage; when the exhaust position did not change and the ventilation volume was within a certain range, the differential pressure resistance coefficient and viscous resistance coefficient decreased with the increasing of internal pressure of the ventilated cavity.


Author(s):  
GholamHossein Maleki ◽  
Ali Reza Davari ◽  
Mohammad Reza Soltani

An extensive experimental investigation was conducted to study the effects of Dielectric Barrier Discharge (DBD), on the flow field of an airfoil at low Reynolds number. The DBD was mounted near the leading edge of a section of a wind turbine blade. It is believed that DBD can postpone the separation point on the airfoil by injecting momentum to the flow. The effects of steady actuations on the velocity profiles in the wake region have been investigated. The tests were performed at α = 4 to 36 degrees i.e. from low to deep stall angles of attack regions. Both surface pressure distribution and wake profile show remarkable improvement at high angles of attack, beyond the static stall angle of the airfoil when the plasma actuation was implemented. The drag calculated from the wake momentum deficit has further shown the favorable role of the plasma actuators to control the flow over the airfoil at incidences beyond the static stall angle of attack of this airfoil. The results demonstrated that DBD has been able to postpone the stall onset significantly. It has been observed that the best performance for the plasma actuation for this airfoil is in the deep stall angles of attack range. However, below and near the static stall angles of attack, plasma augmentation was pointed out to have a negligible improvement in the aerodynamic behavior.


Author(s):  
Farshid Askary ◽  
Mohammad Reza Soltani

A new experimental technique has been developed to measure the pressure distribution over the surface of a rotating model in a wind tunnel for various spin rates, free-stream Mach numbers, and angles of attack. In this method, all of the measuring instruments are placed inside the rotating model which eliminated previous operational limitations and technical problems associated with attempts to measure the Magnus effect. The validity and reliability of the measured data was verified by comparing the integrated surface pressure values and aerodynamic forces, with those directly measured from an internal strain gauge balance. From the acquired surface pressure data distribution of both local and total Magnus force on the model as well as the interpretation of the boundary layer and flow separation effects on the rotating model could be determined. The Magnus force distribution shows that the local Magnus force increases along the length of the model and the maximum local Magnus force occurs at the end of the projectile. The acquired experimental data were further compared with the numerical simulations and satisfactory results were achieved. This new experimental technique can be easily applied to a variety of model configurations testing at different Mach numbers, spin rates, angles of attack, etc.


2021 ◽  
Author(s):  
Peter Essig ◽  
Mathias Liewald ◽  
Maximilian Burkart ◽  
Maxim Beck

Shortened product development processes in automotive industry combined with the upcoming lack of experts do challenge sheet metal part production fundamentally. Tryout time and manufacturing costs of large forming dies today are significantly influenced by their digitally supported engineering. The forming process by such tools is beside other influences is affected by elastic deformations of forming dies and press structure as well as contact areas between die and sheet metal part. In deep drawing such contact areas are influenced by the blank properties and the flange behavior in terms of thickening and thinning. Recent developments in sheet metal forming simulation do consider advanced friction models and structural modeling of die and press components improving simulation accuracy. Nevertheless thinning or thickening of sheet metal results into localized surface pressure distribution during deep drawing. For this reason, it is not sufficient to use the currently common practice of homogeneous surface pressure distribution in sheet metal forming simulation. In this respect, this paper presents a numerical approach for consideration of straining effects in the sheet metal part during forming operation. For this purpose, a systematic process improvement was developed in this paper to identify contact areas via a numeric simulation parameter. Validating the numerical investigation, a rectangle cup die is used, considering major strain. The main results of this contribution for that reason show how simulated contact areas can be estimated by reverse engineering of real forming parts. Hereby straining based contact areas lead to a novel contact area design in process planning, resulting in efficient die tryout.


Author(s):  
Tianxiang Hu ◽  
Yue Zhao ◽  
Peiqing Liu ◽  
Qiulin Qu ◽  
Hao Guo ◽  
...  

The unsteady lift characteristics of a double-delta wing were studied using both experimental and numerical approaches, which were also compared with a single-delta wing with the same main wing sweep angle. It was found that by increasing the reduced frequency of pitching, the hysteresis effect of lift was magnified. Moreover, in the high reduced frequency case k = 0.48, the difference between the lift coefficients of single- and double-delta wings became rather subtle. The wing surface pressure distribution results indicated the flow phenomenon of dramatic lift losses was due to the effect of lower surface suction during the wing being pitched downstroke. It was observed that, as the reduced frequency became sufficiently high, the virtual camber effect induced by pitching could dominate the flow field, which would mitigate the impact of wing geometry on the lift characteristics.


2021 ◽  
Vol 62 (3) ◽  
Author(s):  
Felix Reinker ◽  
Robert Wagner ◽  
Leander Hake ◽  
Stefan aus der Wiesche

AbstractA circular cylinder was tested in the cross-flow of an organic vapor (Novec™ 649) and of air over the subsonic (M < 0.4) and high subsonic (0.4 < M < 0.8) speed range in a continuously running pressurized closed-loop wind tunnel test facility. Time-averaged pressure measurements gave information on surface pressure distributions, and the corresponding drag and base pressure drag coefficients were obtained. Due to the charging of the wind tunnel, different values of the compressibility factor (0.876 < Z < 0.999) could be achieved for the organic vapor flow. This enabled in combination with the results for air an assessment of the impact of non-ideal gas dynamics on the form drag of a cylinder in the considered highly subsonic flow regime. The new experimental data were compared with available literature results. Changes in surface pressure distribution at higher subsonic velocities were identified and discussed. It was found that non-ideal gas effects did not strongly affect the overall drag. The variation of drag coefficient over the Mach number range was comparable with literature data for ideal-gas compressible flow, including shock-less and intermittent shock wave, and permanent shock wave flows regimes. At Mach 0.4, the flow of Novec™ 649 was in the shock-less regime and exhibited a pronounced dependency on the Reynolds number. An increase in drag was observed at Mach 0.6 which was attributed to the commencement of vortex shedding. Non-ideal thermodynamics only affected the flow locally and a reduction of the critical pressure coefficient in the high subsonic flow regime was observed in the surface pressure distribution. However, this mechanism did not alter significantly the overall drag behavior. Graphic abstract Drag coefficient CD against Re for several Mach numbers M and comparison with available literature results obtained for air (colored symbols indicate different Mach number clusters)


Fluids ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 3
Author(s):  
Dipesh Patel ◽  
Andrew Garmory ◽  
Martin Passmore

This research investigates the effects of cornering on a multi-element wing in ground effect with the aim to improve the understanding of such in the effort to improve the performance of open-wheel race cars. A numerical validation study was performed to confirm the validity of the Detached Eddy Simulation CFD methodology used. This involved comparing numerical data with wind tunnel experimental data using a force balance and PIV for the velocity field to reveal the trajectory of the trailing vortex system. Once validated, the CFD was used to test the wing within a cornering condition as well as fixed yaw condition and its aerodynamic performance relative to the straight-line condition was analysed. Asymmetry was the general theme concerning the on-surface pressure distribution with this most prominent under the cornering condition. Ultimately, minimal change was observed regarding the downforce generated whilst drag was found to increase in the cornering condition and decrease slightly in the fixed yaw condition. Asymmetry was also observed in the wake of the wing where alterations to the relative strengths of the vortices was observed as well as their downstream paths which was generally governed by the direction of the freestream flow.


Author(s):  
Bahareh Yahyavi ◽  
Mahmoud Mani ◽  
Habibollah Naddaf

Aerodynamic performance of a full span NACA 641-412 airfoil with a circular-shaped damage at various attack directions has been numerically investigated in this study. To assess the aerodynamic effects of different penetration angles in which threats such as projectiles can pass through the wings, attack directions of 30°, 60°, -30° and -60° relative to the normal axis of the chord line has been studied and compared with attack direction of 0°. To validate with published studies about damaged wing, the 200 mm chord airfoil was simulated with the damage hole diameter of 20% chord at the midspan and midchord location in Reynolds number of 500,000. Quantitative and qualitative results of this numerical study had a good agreement with published experimental data due to appropriate structured mesh and turbulence modelling. In addition to lift, drag and pitching moment coefficient, surface pressure distribution around the damage hole has been studied. Results show that, if the penetration angle becomes more negative, aerodynamics performance of the wing will be further decreased; therefore, attack directions of threat mechanisms such as “ahead and above” or “below from the rear” have severe negative impact than other directions on aerodynamic performance of the damaged infinite wing.


Sign in / Sign up

Export Citation Format

Share Document