stall angle
Recently Published Documents


TOTAL DOCUMENTS

112
(FIVE YEARS 49)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Vol 12 (1) ◽  
pp. 276
Author(s):  
Hui Wang ◽  
Huan Li ◽  
Xuhui He

The aerodynamic features of a train and flat closed-box bridge system may be highly sensitive to train-bridge aero interactions. For the generally utilized railway bridge-deck with two tracks (the upstream and downstream ones), the aero interactions above are occupied-track-dependent. The present paper thus aims to reveal the aero interactions stated above via a series of wind tunnel tests. The results showed that the aero interactions of the present train-bridge system display four typical behaviors, namely, the underbody flow restraining effect, bridge deck shielding effect, flow transition promoting effect, and the flow separation intensifying effect. The above four aero interactions result in obvious reductions in the aerodynamic forces of the train in wind angle of attack α of [−4°, 12°] and in the static stall angle of the bridge-deck, and leads to sensible increases in the absolute values of the bridge aerodynamic forces in α of [−4°, 12°]. Upon comparing the results with the same train and bridge system but with the train model mounted on the downstream track, the quasi-Reynolds number effect was non-detectable when the train model was moved to the upstream track. Thus, no drag crisis and other saltatory aerodynamic behaviors were observed in the present study in α of [0°, 12°].


2021 ◽  
Vol 9 ◽  
Author(s):  
Haiyu Liu ◽  
Pengcheng Lin ◽  
Fangping Tang ◽  
Ye Chen ◽  
Wenpeng Zhang ◽  
...  

In order to study the energy loss of bi-directional hydraulic machinery under cavitation conditions, this paper uses high-speed photography combined with six-axis force and torque sensors to collect cavitating flow images and lift signals of S-shaped hydrofoils simultaneously in a cavitation tunnel. The experimental results show that the stall angle of attack of the S-shaped hydrofoil is at ±12° and that the lift characteristics are almost symmetrical about +1°. Choosing α = +6° and α = −4° with almost equal average lift for comparison, it was found that both cavitation inception and cloud cavitation inception were earlier at α = −4° than at α = +6°, and that the cavitation length at α = −4° grew significantly faster than at α = +6°. When α = +6°, the cavity around the S-shaped hydrofoil undergoes a typical cavitation stage as the cavitation number decreases: from incipient cavitation to sheet cavitation to cloud cavitation. However, when α = −4°, as the cavitation number decreases, the cavitation phase goes through a developmental process from incipient cavitation to sheet cavitation to cloud cavitation to sheet cavitation to cloud cavitation, mainly because the shape of the S-shaped hydrofoil at the negative angle of attack affects the flow of the cavity tails, which is not sufficient to form re-entrant jets that cuts off the sheet cavitation. The formation mechanism of cloud cavitation at the two different angles of attack (α = +6°、−4°) is the same, both being due to the movement of the re-entrant jet leading to the unstable shedding of sheet cavity. The fast Fourier analysis reveals that the fluctuations of the lift signals under cloud cavitation are significantly higher than those under non-cavitation, and the main frequencies of the lift signals under cloud cavitation were all twice the frequency of the cloud cavitation shedding.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012153
Author(s):  
Vimal Patel ◽  
Vikram Rathod ◽  
Chirag Patel

Abstract The aerofoil plays an important role in any structure moving in a fluid-like in a passenger plane, jet plane, or helicopter. The aerofoils decide whether the lift force is appropriate to balance the weight of the plane or not and the amount of drag force is required on the vehicle. The purpose of this project is to simulate the M21 Aerofoil with the help of FLUENT and validate it with theory. This Project also includes the study of various Flapper designs and their simulation. Flappers are useful when the Airplane is about to take-off or landing. The Important parameters to be study are Lift Force, Drag Force, lift coefficient, and Drag coefficient. Simulation has been done for the different Angle of Attack which is useful for finding maximum Lift force and Stall Angle. The Work includes simulation of Plain Flapper for the Angle of Attack where CL/CD is maximum. Similar work can be done for different types of Flapper used in Airplane. The stall angle achieved for M21 was 24° and maximum value of CL/CD measured at 7° A.O.A. Investigation also shows that for the 10° plain flap angle highest drag and lift force was possible. It contains the study of the Adverse Yaw effect which rolls the Airplane while taking a turn. since the validity of any theoretical prediction can only be assessed in practice.


2021 ◽  
Vol 71 (6) ◽  
pp. 721-729
Author(s):  
Deepak Kumar Singh ◽  
Anuj Jain ◽  
Akshoy Ranjan Paul

A time-dependent numerical simulation is performed to examine the flow separation control with the action of a hybrid jet (the combination of synthetic and continuous jets) over a NACA23012 airfoil. The unsteady Reynolds-averaged Navier–Stokes (URANS) simulation is performed with Spalart-Allmaras (SA) turbulence model to simulate the flow field around the airfoil to analyse the effect of the hybrid jet. A combined jet is placed at the point of flow separation on the upper surface of the airfoil which is located at the 12% of the chord length from the leading edge of the airfoil for a given flow configuration. Flow simulations are performed at a chord-based Reynolds number of 2.19 × 106 for the hybrid jet oscillating frequency of 0.159 at a blowing ratio of 3.0. The contribution of the continuous jet in the hybrid jet is evident by the flow control. Variation in the continuous jet velocity is studied, which improved the aerodynamic characteristics of the airfoil. The maximum improvement in lift to drag ratio is observed from 11.19 to 22.14 at an angle of attack of 22 degree. The stall angle also shows an enhancement from 18 degree to 20 degree.


2021 ◽  
Vol 11 (20) ◽  
pp. 9561
Author(s):  
Shunlei Zhang ◽  
Xudong Yang ◽  
Bifeng Song ◽  
Zhuoyuan Li ◽  
Bo Wang

Rotor airfoil design involves multi-point and multi-objective complex constraints. How to significantly improve the maximum lift coefficient and lift-to-drag ratio of rotor airfoil is a fundamental problem, which should be solved urgently in the development of high-performance helicopter rotor blades. To address this, discrete co-flow jet (DCFJ) technology is one methods with the most potential that can be harnessed to improve the performance of the rotor airfoil. In this study, wind tunnel experiments are conducted to study the effect of DCFJ technology on lift enhancement and drag reduction of OA312 airfoil. Furthermore, the performance improvement effects of the open co-flow jet (CFJ) and DCFJ technologies are studied. In addition, the influence of fundamental parameters, such as the obstruction factor and relative unit length, are analyzed. Results demonstrate that DCFJ technology is better than CFJ technology on the performance enhancement of the OA312 airfoil. Moreover, the DCFJ rotor airfoil can significantly reduce the drag coefficient and increase the maximum lift coefficient and the stall angle of attack. The maximum lift coefficient can be increased by nearly 67.3%, and the stall angle of attack can be delayed by about 12°. The DCFJ rotor airfoil can achieve the optimal performance when the obstruction factor is 1/2 and the relative unit length is 0.025.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1656
Author(s):  
Pan Xiong ◽  
Jianghong Deng ◽  
Xinyuan Chen

In order to improve the hydrodynamic performance of hydrofoils, this paper shows excellent hydrodynamic performance according to the flapping motion of fish through the tail fin. The Naca66 hydrofoil is used as the original hydrofoil and the trailing edge flap configuration is added. Ansys-fluent is used to analyze the relationship between the structural parameters (length and angle) of the flap and the hydrodynamic performance of the hydrofoil, the reliability of CFD numerical simulation is verified by PIV experiment. It is found that the hydrofoil, with clockwise rotating short flap, can significantly improve the hydrodynamic performance of a hydrofoil at a small angle of attack; at a high angle of attack, the hydrofoil with counterclockwise flap can increase the critical stall angle and slightly improve the hydrodynamic performance of the hydrofoil. The hydrodynamic performance of hydrofoil with rotatable short flaps reported in this paper can provide valuable information for the design and optimization of this kind of hydrofoil.


Author(s):  
Constantin Jux ◽  
Andrea Sciacchitano ◽  
Fulvio Scarano

The aerodynamic characteristics of a modern road cycling wheel in crosswind are studied through force measurements and 3D velocimetry in TU Delft’s Open Jet Facility. The performance of the 62 mm deep rim is evaluated for two tire profiles, and yaw angles up to 20◦ . All measurements are executed at 12.5 m/s (45 km/h) freestream- and wheel-rotational velocity. The wheel’s rim-tire section in crosswind is found to behave similar to an airfoil at incidence, ultimately resulting in a reduction of the wheel’s aerodynamic resistance with increasing yaw angle magnitude. This trend, also referred to as the sail-effect, is limited by the stall angle of the tire-rim profile. The stall angle is found to be dependent on the tire surface texture and varies between 14◦ and 20◦.


Author(s):  
Noor Iswadi Ismail ◽  
Mahamad Hisyam Mahamad Basri ◽  
Hazim Sharudin ◽  
Zurriati Mohd Ali ◽  
Ahmad Aliff Ahmad Shariffuddin ◽  
...  

This paper presents the investigation and improvement of lift and drag characteristics of Neo-Ptero micro-UAV models based on the virtual wind tunnel method. Despite its successful development and flight stability, the lift and drag coefficients characteristics of the current Mark 1 Neo-Ptero remain unknown. To improve the Mark 1 Neo-Ptero performances, Mark 2 Neo-Ptero model has given a new unsymmetrical airfoil wing configuration. The computational aerodynamic analysis was executed and focused on certain lift and drag coefficient characteristics. Lift coefficient results showed that Mark 2 improved in overall lift characteristics such as zero-lift angle, maximum lift magnitude and stall angle magnitude. Conversely, Mark 2 model suffered a slightly higher drag coefficient magnitude and more significant drag increment percentage than Mark 1. However, the trade-off between superior lift magnitude and minor drag generation induced by Mark 2 boosts the model’s aerodynamic efficiency performances but is only limited at early angle stages.


2021 ◽  
Vol 15 (2) ◽  
pp. 8205-8218
Author(s):  
A. A. Mehraban ◽  
Mohammad Hassan Djavareshkian

Present study experimentally investigates the effects of ground clearance and Reynolds number on aerodynamic coefficients of smooth and sinusoidal leading-edge wings. Wind tunnel tests are conducted over a wide range of angles of attack from zero to 36 degrees, low Reynolds numbers of 30,000, 45,000 and 60,000, and also ground clearances of 0.5, 1 and ∞. Results showed that reduction of ground clearance and increment of Reynolds number cause the lift coefficient and the lift to drag ratio of both wings to be enhanced. Furthermore, the effects of Reynolds number and ground clearance on the smooth leading-edge wing are more than the sinusoidal leading-edge one. In addition, the sinusoidal leading-edge wing shows an excellent performance in the poststall region due to producing a higher lift and also by delaying the stall angle compared to the smooth leading-edge wing.


Aerospace ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 166
Author(s):  
Sekar Mano ◽  
RadhaKrishnan Ajay Sriram ◽  
Ganesan Vinayagamurthy ◽  
Subramania Nadaraja Pillai ◽  
Amjad Ali Pasha ◽  
...  

This numerical study reports the aerodynamic properties of a hybrid airship. The hybrid airships were designed by combining two semi-ellipsoids with a semi-discoid as the base model. From the base model, three different geometrics were identified to study their aerodynamic characteristics. A circular slot was provided between the pressure side and the suction side of the airship. The objective of this study was to realize the flow behavior, aerodynamic characteristics, and stability properties of such slotted hybrid flying vehicles. Interestingly, the results imply that the lift coefficient increases with an increase in the angle of attack for the slotted configurations; this is because the flow separation is delayed due to the slot opening, which in turn is due to the flow of energies from the high-pressure region to the bottom through the slots. The delayed stall angle was 50 degrees, which was 10% more than that of the base model. Aerodynamic characteristics are discussed based on surface pressure, coefficient of lift, and coefficient of drag for various slotted hybrid airships.


Sign in / Sign up

Export Citation Format

Share Document