scholarly journals An evaluation of effects of operational parameters on NOx emissions through detailed chemical kinetics simulations

2019 ◽  
Vol 158 ◽  
pp. 103-110 ◽  
Author(s):  
Øyvind Skreiberg ◽  
Tian Li ◽  
Elettra Vantaggiato ◽  
Liang Wang ◽  
Mette Bugge ◽  
...  
Author(s):  
Marco Antonio Nascimento ◽  
Lucilene Oliveria Rodrigues ◽  
Fagner Luis Goulart Dias

Author(s):  
A. I. Lopato ◽  
◽  
A. G. Eremenko ◽  

Recently, we developed a numerical approach for the simulation of detonation waves on fully unstructured grids and applied it to the numerical study of the mechanisms of detonation initiation in multifocusing systems. Current work is devoted to further development of our numerical approach, namely, parallelization of the numerical scheme and introduction of more comprehensive detailed chemical kinetics scheme.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
P. R. Resende ◽  
Alexandre Afonso ◽  
Carlos Pinho ◽  
Mohsen Ayoobi

Combustion characteristics at small scales have been studied continuously due to the potential applications in portable power devices. It is known that heat release impacts at small scales result in different flame behavior as compared to conventional scales. The impacts of geometry, stoichiometry, flow rates, wall temperatures, etc., are widely studied in the literature. However, dilution impacts still need to be further studied due to its important role on controlling the flame behavior and subsequent pollutants emissions at these scales. In this work, premixed hydrogen/air combustion is simulated at an axis-symmetric microchannel (with diameter D = 0.8 mm and length L = 10 mm), where detailed chemical kinetics are implemented in simulations (32 species and 173 reactions). The heat transfer on the wall is considered by imposing a hyperbolic temperature profile on the wall, where the wall temperature increases from 300 K at the inlet to 1300 K at the outlet. With this setup, a range of equivalence ratios including a typical fuel-lean regime (ϕ = 0.7), stoichiometric regime (ϕ = 1.0), and two cases at an ultra-rich regime (ϕ = 2.0 and ϕ = 3.0) are investigated. For each equivalence ratio, excess dilution (using N2) is introduced to the mixture, and its impact is compared with other cases. With that, the impacts of dilution variations on the combustion characteristics of premixed hydrogen/air are investigated for different equivalence ratios. More specifically, several incidents such as flame dynamics, flame stabilization, extinctions, and NOx emissions are studied for the aforementioned operating conditions.


Sign in / Sign up

Export Citation Format

Share Document